五分钟解释什么是蒙特卡罗(Monte Carlo Method)方法

我们经常在各类算法中看到”蒙特卡罗”(Monte Carlo)的字样, 比如MCMC(Markov Chain Monte Carlo) , 还有AlphaGo使用的蒙特卡洛搜索树. 其实, “蒙特卡罗”并不是一个特定算法, 它是一个思想或者方法的统称. 听起来很神秘, 其实用正常”人话”就能简单解释.

维基百科对蒙特卡罗方法英语:Monte Carlo method)给出的解释是:

二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

与它对应的是确定性算法

所以说, 蒙特卡罗算出的值, 不是精确的而是一个估计, 但是在人们可以接受的错误范围.

下面是维基百科上一个很直观的例子:

330px-pi_30k

使用蒙特卡洛方法估算π值. 放置30000个随机点后,π的估算值与真实值相差0.07%.

这张图其实很简单, 就像我们玩飞镖一样, 随机地在一个方形平面上投掷30000个飞镖, 事先我们并不知道圆周率π的值究竟是多少, 但是我们知道这里有1/4的圆, 于是我们把红色面积上的点数m, 和蓝色面积上的点数n, 以及圆周率π的关系, 可以写出一个约等于的式子:

π ≈ 4m/(n+m) 继续阅读五分钟解释什么是蒙特卡罗(Monte Carlo Method)方法

用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则

line search(一维搜索,或线搜索)是最优化(Optimization)算法中的一个基础步骤/算法。它可以分为精确的一维搜索以及不精确的一维搜索两大类。
在本文中,我想用“人话”解释一下不精确的一维搜索的两大准则:Armijo-Goldstein准则 & Wolfe-Powell准则。
之所以这样说,是因为我读到的所有最优化的书或资料,从来没有一个可以用初学者都能理解的方式来解释这两个准则,它们要么是长篇大论、把一堆数学公式丢给你去琢磨;要么是简短省略、直接略过了解释的步骤就一句话跨越千山万水得出了结论。
每当看到这些书的时候,我脑子里就一个反应:你们就不能写人话吗?

我下面就尝试用通俗的语言来描述一下这两个准则。

【1】为什么要遵循这些准则
由于采用了不精确的一维搜索,所以,为了能让算法收敛(即:求得极小值),人们逐渐发现、证明了一些规律,当你遵循这些规律的时候,算法就很有可能收敛。因此,为了达到让算法收敛的目的,我们就要遵循这些准则。如果你不愿意遵循这些已经公认有效的准则,而是要按自己的准则来设计算法,那么恭喜你,如果你能证明你的做法是有效的,未来若干年后,书本里可能也会出现你的名字。

 

【2】Armijo-Goldstein准则
此准则是在196X年的时候由Armijo和Goldstein提出的,当然我没有具体去搜过这俩人是谁。在有的资料里,你可能会看到“Armijo rule”(Armijo准则)的说法,可能是同一回事,不过,任何一个对此作出重要贡献的人都是不可抹杀的,不是么?

Armijo-Goldstein准则的核心思想有两个:①目标函数值应该有足够的下降;②一维搜索的步长α不应该太小。 继续阅读用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则

Ubuntu 怎么升级 TensorFlow 到最新版0.10 ?

第一步:

$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0rc0-cp27-none-linux_x86_64.whl

第二步:

安装 TensorFlow:

# Python 2

$ sudo pip install --upgrade $TF_BINARY_URL

# Python 3

$ sudo pip3 install --upgrade $TF_BINARY_URL

参考文献: