过去十年是云计算(集中式计算)流行的十年,我们不知道什么时候分布式或其他形式的“分散式计算”会“卷土重来”,但我似乎看到了“暗流涌动”。 — David 9
补充上一期我们聊到的“Tesla自动驾驶搞定多任务学习”,这次,特斯拉AI负责人Andrej Karpathy在PyTorch DEVCON 2019上进一步讨论了内部整体架构:
其中主要谈了两点:“PyTorch distributed training” 和 infrastructure 层面的一些东西。
继续上次的讨论,我们知道特斯拉autopilot自动驾驶不借助LIDAR激光而是通过八个方向的摄像头进行环境判断:
最后对模型来说要有一个top-down的俯视图做最终决策:
这就要求autopilot模型不断接受从8个摄像头捕捉到的图像,并同时输出许多output(1000个左右),而且,模型同时承载多个任务(目标检测,深度检测,目标识别等等),整个autopilot模型会包含许多个子模型(子任务):
事实上,上图的8个子模型其实是简化了,其实auopilot有48个子模型。上图只是象征性地展示多模型同时有很多输出。而反向传播更新时,
加入David9的星球群,获得通行密码 , 阅读全文
The following two tabs change content below.
David 9
邮箱:yanchao727@gmail.com
微信: david9ml
Latest posts by David 9 (see all)
- 修订特征已经变得切实可行, “特征矫正工程”是否会成为潮流? - 27 3 月, 2024
- 量子计算系列#2 : 量子机器学习与量子深度学习补充资料,QML,QeML,QaML - 29 2 月, 2024
- “现象意识”#2:用白盒的视角研究意识和大脑,会是什么景象?微意识,主体感,超心智,意识中层理论 - 16 2 月, 2024