当变分推断(variational inference)遇上神经网络,贝叶斯深度学习以及Pytorch开源代码

如果人脑在执行任务时有特定模式,那么神经网络在增强学习中也应该有特定模式,而不是杂乱无章地更新 — David 9

我们在之前的文章中讨论过,Evolution Strategy遗传算法等传统算法都可以在深度增强学习中发挥作用。其实,人们早就在神经网络中植入各种传统机器学习的方法(包括L2正则法等等)。

在2015年google的论文中就提到结合变分推断(variational inference)启发式更新神经网络的内部参数:

来自:https://arxiv.org/pdf/1505.05424.pdf

其性能效果堪比dropout方法,并且在增强学习中有较好表现。

那么,贝叶斯深度学习或者说变分推断(variational inference)如何应用在神经网络呢?

理论上,对于一般的深度神经网络,Loss如下:

θ 是神经网络的内部参数集。xi, yi 即样本集中的一个样本。上式只是让训练损失最小。

即,要找到一个最好的 θ* ,让  Ln(θ) 最小。 继续阅读当变分推断(variational inference)遇上神经网络,贝叶斯深度学习以及Pytorch开源代码