CVPR 2017论文精选#3 不可思议的研究: EEG脑电波深度学习在视觉分类中的应用

大脑是天然的特征提取器, 如果不能理解它, 或许可以模拟它, 它蕴含的泛化能力真是惊人 — David 9

许多人相信VR或AR硬件可能是人机交互的未来,  这些欺骗人眼睛和感官的技术, 都是来源于我们对这些感官更深层次的理解. 越是对这些感官了解透彻, 越是容易创造出魔法般的人机交互. 今天David 9想要分析的论文就和感官交互有关, 特别之处是它是人体最复杂的感官 — 大脑 .

很难想象今年CVPR上竟然有这样一篇近乎科幻不可思议的研究, 相信读完你也会兴奋的.

这篇文章本质上的研究, 是从EEG脑电波提取视觉特征, 从而进行我们常见的视觉分类任务(狗? 吉他? 鞋子? 披萨?):

来自: https://www.youtube.com/watch?v=9eKtMjW7T7w&t=343s

最后一层全连接层做的视觉分类任务是非常常见的.

不同的是前面层不再是从头训练Alexnet, GoogleNet或者VGG, 也不是预训练的神经网络. 而是通过收集脑电波信息, 分析脑电波提取的抽象特征. 继续阅读CVPR 2017论文精选#3 不可思议的研究: EEG脑电波深度学习在视觉分类中的应用

CVPR 2017论文精选#2 密集连接的卷积网络DenseNet(Best paper award 最佳论文奖)

如果大脑中的每个神经元都代表一些训练参数,那么,我们在不断的学习过程中,现有的神经元够用吗?大脑是如何优化参数效率的? — David 9

这届CVPR上的两篇最佳论文中, David 9更欣赏康奈尔大学和清华大学的密集连接卷积网络DenseNet(Densely Connected Convolutional Networks) , 内容有料,工作踏实 !我们在之前文章就提到,模型泛化能力的提高不是一些普通的Tricks决定的,更多地来源于模型本身的结构。

CNN发展至今,人们从热衷于探索隐式正则方法(Dropout, Batch normalization等等),到现在开始逐渐关注模型本身结构的创新。这是一个好现象。

密集连接卷积网络DenseNet正是试图把跳层连接做到极致的一种结构创新:

图1-密集连接模块,来自:https://arxiv.org/pdf/1608.06993.pdf

跳层连接方法是对中间层输出特征图信息的探索,之前的ResNets和Highway Networks都曾使用,把前层的输出特征图信息直接传递到后面的一些层,可以有效地提高信息传递效率和信息复用效率。 继续阅读CVPR 2017论文精选#2 密集连接的卷积网络DenseNet(Best paper award 最佳论文奖)

CVPR 2017论文精选#1 用模拟+非监督对抗生成图片的增强方法进行学习(Best paper award 最佳论文奖)

人类的想象力似乎是天生的, 而现今计算机的”想象力”来自”数据增强”技术. — David 9

这届CVPR上, 苹果为博得AI界眼球, 竟然拿到了最佳论文 !  也许这篇论文没有什么深远意义,也许只能反映学术被业界商界渗透的厉害,也许有更好的文章应该拿到最佳论文。

这又何妨, 历史的齿轮从来不会倒退, David 9看到的趋势是, 人类越来越擅长赋予计算机”想象力”, 以GAN为辅助的”数据增强”技术是开始, 但绝不是终点 !

言归正传, 来剖析这篇论文, 首先,这篇文章的目标非常清晰,就是用非监督训练集,训练一个“图片优化器”(refiner),用来优化人工模拟图片,使得这一模拟图片更像真实图片,并且具有真实图片的独特属性:

如上图,人工模拟的伪造图片(Synthetic)经过优化器Refiner变得与非监督集合(第一行的3张图片)非常相似,极大的增强了模拟图片的真实性。 继续阅读CVPR 2017论文精选#1 用模拟+非监督对抗生成图片的增强方法进行学习(Best paper award 最佳论文奖)