聊聊目标检测中的多尺度检测(Multi-Scale),从YOLO,ssd到FPN,SNIPER,SSD填坑贴和极大极小目标识别

狙击手在放大倍焦前已经经历了大量的小目标训练,这样看似乎是RPN做的好 — David 9

之前在讲SSD时我们聊过SSD的目标检测是如何提高多尺度(较大或较小)物体检测率的。我们来回顾一下,首先,较大的卷积窗口可以卷积后看到较大的物体, 反之只能看到较小的图片. 想象用1*1的最小卷积窗口, 最后卷积的图片粒度和输入图片粒度一模一样. 但是如果用图片长*宽 的卷积窗口, 只能编码出一个大粒度的输出特征.

对于yolov1,每层使用同样大小的卷积窗口, 识别超大物体或者超小物体就变得无能为力(最后一层的输出特征图是固定7*7):

YOLO架构示意图

SSD就更进一步,最后一层的检测是由之前多个尺度(Multi-Scale)的特征图共同生成的:

SSD架构示意图

这样SSD在计算复杂度允许的情况下,在多尺度物体的检测上有所提高。但是SSD也有明显缺陷,其最后几层的所谓“多尺度”是有限的(如上图特征图尺寸越小,可以识别的物体越大)。对于极小的目标识别,SSD就显得无能为力了继续阅读聊聊目标检测中的多尺度检测(Multi-Scale),从YOLO,ssd到FPN,SNIPER,SSD填坑贴和极大极小目标识别

吴恩达新书《Machine Learning Yearning》读后感,验证(测试)集怎么选?如何高效分析性能?降低可避免偏差和方差?实操经验总结

如果你要选验证集或测试集,就选那些你预料未来数据的样子(Choose dev and test sets to reflect data you expect to get in the future and want to do well on)— 吴恩达

前不久吴恩达新书“机器学习念想”(Machine Learning Yearning)手稿完工(不知道这样翻译会不会被打。。)David 9 忍不住拜读 ,把读后感总结如下,欢迎指正和交流:

纵观全书分三部分:

  1. 怎么构建验证集和测试集?
  2. 如何构建有效的性能和错误分析机制 ?如何优化模型?
  3. 端到端模型的一些讨论

事实上,上手深度学习(机器学习)项目最先要做的和模型本身关系不大,而是构思性能验证系统和错误分析的有效机制。

艺术品最华丽的可能是最后的润色,但其构思、规划以及推敲往往占据大师平时更多心力

列奥纳多·达·芬奇《岩间圣母》草图(左), 和最后完整润色后画作(右)

同样,构建一个高效的深度学习系统,首先要有一个好的验证体系、推敲整理过的数据集、高效的错误分析机制,这样最后的润色(模型优化)才能水到渠成。

1. 谈谈验证(测试)集怎么选?

书中建议是,如果你要选验证集或测试集,就选那些你预料未来数据的样子。因此训练集样本分布不需要和验证集(测试集)相同。用白话说就是以你预料“现场”的样本分布为准。 继续阅读吴恩达新书《Machine Learning Yearning》读后感,验证(测试)集怎么选?如何高效分析性能?降低可避免偏差和方差?实操经验总结

谷歌大脑的“世界模型”(World Models)与基因学的一些思考,MDN-RNN与Evolution Strategies结合的初体验与源码

我们现在看到的智能算法都不是“可生长”的,遗传算法和ES只是强调了基因的“变异”,神经网络只是固定网络结构;而生物界的基因却可以指导蛋白质构成并且“生长”。— David 9

今年上半年谷歌大脑的“世界模型”(World Models)早已引起David 9的注意,今天终于有机会和大家叨叨。对于CarRacing-v0这个增强学习经典游戏:

来自:https://github.com/AdeelMufti/WorldModels

世界模型(World Models)与其他增强学习相比有一些明显优势:

来自:https://arxiv.org/abs/1803.10122

优势的来源David 9总结有两点:1. 模型拼接得足够巧妙,2. 抓住了一些“强视觉”游戏的“痛点”。 继续阅读谷歌大脑的“世界模型”(World Models)与基因学的一些思考,MDN-RNN与Evolution Strategies结合的初体验与源码