#5 Deep learning RNN-RBM简单理解

前言:

本文主要是bengio的deep learning tutorial教程主页中最后一个sample:rnn-rbm in polyphonic music. 即用RNN-RBM来model复调音乐,训练过程中采用的是midi格式的音频文件,接着用建好的model来产生复调音乐。对音乐建模的难点在与每首乐曲中帧间是高度时间相关的(这样样本的维度会很高),用普通的网络模型是不能搞定的(普通设计网络模型没有考虑时间维度,图模型中的HMM有这方面的能力),这种情况下可以采用RNN来处理,这里的RNN为recurrent neural network中文为循环神经网络,另外还有一种RNN为recursive neural network翻为递归神经网络。本文中指的是循环神经网络。

 

RNN简单介绍:

首先来看RNN和普通的feed-forward网络有什么不同。RNN的网络框架如下:

23214434-ef7947ebef344d86b21e0d0550dc833d

由结构图可以知道,RNN和feed-forward相比只是中间隐含层多了一个循环的圈而已,这个圈表示上一次隐含层的输出作为这一次隐含层的输入,当然此时的输入是需要乘以一个权值矩阵的,这样的话RNN模型参数只多了个权值矩阵。更形象的RNN图可以参考:

23214454-70eff8a889084189a5dec17732ce0ea5

以及图:

23214531-bb0045ee3cd84dd4a62bbc18f79d0a99

按照上图所示,可知道RNN网络前向传播过程中满足下面的公式(参考文献Learning Recurrent Neural Networks with Hessian-Free Optimization):23214547-4769b63168f5491388716f64f158a61a

其代价函数可以是重构的误差:23214600-9af9447ed5454a5cb0bac1137d12e49e

也可以是交叉熵:23214606-eeecc6df6cd84c20bc2fdc943ca77ee3

相信熟悉普通深究网络的同学看懂这些应该不难。

 

RNN-RBM简单介绍:

RNN-RBM来自ICML2012的论文:Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription,它由一个单层的RBM网络和单层的RNN网络构成,且由RNN网络的输出作为最终网络的输出。RBM部分当生成模型的功能,比如这里的音乐生成,RNN部分当判别模型作用,比如它的输出当值可当做提取的特征。RNN-RBM模型的结构如下:23214617-dc726ff81c6d4d62acfd4519a9c10116

模型上面是RBM部分,下面是RNN部分,对应的公式可以参考论文。模型中一共有9个参数:23214639-69866e1173b64834ac4d753146eee0a3

整个模型的代价函数为-P(v),其中:23214647-69061415a22f481f966fb38de83e0a4a23214656-2aca1ffcb61a411082029175edc11065

对该loss function求导,然后采用SGD算法就可以求出模型中的各个参数了。当然了,其中的RBM部分还需要用Gibbs采样完成CD-k算法。

 

实验结果:

实验部分参考http://deeplearning.net/tutorial/rnnrbm.html,实验须用的数据和paper对应的见http://www-etud.iro.umontreal.ca/~boulanni/icml2012. 由于本人对乐理方面的知识不是很懂,很多实验代码细节没有去深究,只是看下算法的大概流程。由RNN-RBM生成的两个pinao roll数据如下(程序跑了20个小时左右):23214818-e790341e5d3f4eb3be0b0c1066df839723214834-cd14def6241441569deadda2e7d3dfd1

 

迭代200次后的cost为:

......
Epoch 197/200 -4.7050858655
Epoch 198/200 -4.69198161366
Epoch 199/200 -4.66586797348
Epoch 200/200 -4.68651185036

 

代码如下: 

# Author: Nicolas Boulanger-Lewandowski
# University of Montreal (2012)
# RNN-RBM deep learning tutorial
# More information at http://deeplearning.net/tutorial/rnnrbm.html

import glob
import os
import sys

import numpy
try:
    import pylab
except ImportError:
    print "pylab isn't available, if you use their fonctionality, it will crash"
    print "It can be installed with 'pip install -q Pillow'"

from midi.utils import midiread, midiwrite
import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams

#Don't use a python long as this don't work on 32 bits computers.
numpy.random.seed(0xbeef)
rng = RandomStreams(seed=numpy.random.randint(1 << 30))
theano.config.warn.subtensor_merge_bug = False


#给定rbm的3个参数w,bv,bh,输入端数据v,以及gibbs采用长度k
#返回的tuple元素依次是:v_samples(k次gibbs采用得到的输入端数据,01化后的),cost(rbm模型中的-log(v)),monitor(监控用变量),
#updates(保留每次迭代的中间过程,如果是shared变量的话)
def build_rbm(v, W, bv, bh, k):
    '''Construct a k-step Gibbs chain starting at v for an RBM.

v : Theano vector or matrix
  If a matrix, multiple chains will be run in parallel (batch).
W : Theano matrix
  Weight matrix of the RBM.
bv : Theano vector
  Visible bias vector of the RBM.
bh : Theano vector
  Hidden bias vector of the RBM.
k : scalar or Theano scalar
  Length of the Gibbs chain.

Return a (v_sample, cost, monitor, updates) tuple:

v_sample : Theano vector or matrix with the same shape as `v`
  Corresponds to the generated sample(s).
cost : Theano scalar
  Expression whose gradient with respect to W, bv, bh is the CD-k approximation
  to the log-likelihood of `v` (training example) under the RBM.
  The cost is averaged in the batch case.
monitor: Theano scalar
  Pseudo log-likelihood (also averaged in the batch case).
updates: dictionary of Theano variable -> Theano variable
  The `updates` object returned by scan.'''

    def gibbs_step(v): #该函数功能是一次gibbs采样后得到的mean_v,v
        mean_h = T.nnet.sigmoid(T.dot(v, W) + bh)
        h = rng.binomial(size=mean_h.shape, n=1, p=mean_h, #产生二项分布,隐含层节点01化
                         dtype=theano.config.floatX)
        mean_v = T.nnet.sigmoid(T.dot(h, W.T) + bv)
        v = rng.binomial(size=mean_v.shape, n=1, p=mean_v, #反向传播,输入层节点也01化
                         dtype=theano.config.floatX)
        return mean_v, v #一次Gibbs采样后输入层01化前后的值
    #输入的是v,输出的是每一次Gibbs采样后的v构成的list,一共进行k次Gibbs采样
    chain, updates = theano.scan(lambda v: gibbs_step(v)[1], outputs_info=[v], 
                                 n_steps=k) #updates里面装的是每次的输入值
    v_sample = chain[-1] #k次Gibbs采样后输入端的值(01化过后的)

    mean_v = gibbs_step(v_sample)[0] #再次Gibbs前进一次,得到没有01化的输入端数码,用于监控的变量
    monitor = T.xlogx.xlogy0(v, mean_v) + T.xlogx.xlogy0(1 - v, 1 - mean_v)
    monitor = monitor.sum() / v.shape[0]

    def free_energy(v): #公式4,能量的计算公式
        return -(v * bv).sum() - T.log(1 + T.exp(T.dot(v, W) + bh)).sum()
    cost = (free_energy(v) - free_energy(v_sample)) / v.shape[0] #代价函数

    return v_sample, cost, monitor, updates


def shared_normal(num_rows, num_cols, scale=1):
    '''Initialize a matrix shared variable with normally distributed
elements.'''
    return theano.shared(numpy.random.normal(
        scale=scale, size=(num_rows, num_cols)).astype(theano.config.floatX))


def shared_zeros(*shape):
    '''Initialize a vector shared variable with zero elements.'''
    return theano.shared(numpy.zeros(shape, dtype=theano.config.floatX))


def build_rnnrbm(n_visible, n_hidden, n_hidden_recurrent):
    '''Construct a symbolic RNN-RBM and initialize parameters.

n_visible : integer
  Number of visible units.
n_hidden : integer
  Number of hidden units of the conditional RBMs.
n_hidden_recurrent : integer
  Number of hidden units of the RNN.

Return a (v, v_sample, cost, monitor, params, updates_train, v_t,
          updates_generate) tuple:

v : Theano matrix
  Symbolic variable holding an input sequence (used during training)
v_sample : Theano matrix
  Symbolic variable holding the negative particles for CD log-likelihood
  gradient estimation (used during training)
cost : Theano scalar
  Expression whose gradient (considering v_sample constant) corresponds to the
  LL gradient of the RNN-RBM (used during training)
monitor : Theano scalar
  Frame-level pseudo-likelihood (useful for monitoring during training)
params : tuple of Theano shared variables
  The parameters of the model to be optimized during training.
updates_train : dictionary of Theano variable -> Theano variable
  Update object that should be passed to theano.function when compiling the
  training function.
  v_t : Theano matrix
  Symbolic variable holding a generated sequence (used during sampling)
updates_generate : dictionary of Theano variable -> Theano variable
  Update object that should be passed to theano.function when compiling the
  generation function.'''

    W = shared_normal(n_visible, n_hidden, 0.01)
    bv = shared_zeros(n_visible)
    bh = shared_zeros(n_hidden)
    Wuh = shared_normal(n_hidden_recurrent, n_hidden, 0.0001)
    Wuv = shared_normal(n_hidden_recurrent, n_visible, 0.0001)
    Wvu = shared_normal(n_visible, n_hidden_recurrent, 0.0001)
    Wuu = shared_normal(n_hidden_recurrent, n_hidden_recurrent, 0.0001)
    bu = shared_zeros(n_hidden_recurrent)

    params = W, bv, bh, Wuh, Wuv, Wvu, Wuu, bu  # learned parameters as shared
                                                # variables

    v = T.matrix()  # a training sequence
    u0 = T.zeros((n_hidden_recurrent,))  # initial value for the RNN hidden
                                         # units

    # If `v_t` is given, deterministic recurrence to compute the variable
    # biases bv_t, bh_t at each time step. If `v_t` is None, same recurrence
    # but with a separate Gibbs chain at each time step to sample (generate)
    # from the RNN-RBM. The resulting sample v_t is returned in order to be
    # passed down to the sequence history.
    # 如果给定t时刻的v和t-1时刻的u,那么返回t时刻的u,bv,bh,含有25次Gibbs采样过程
    # 如果只给定t-1时刻的u(即没有t时刻的v),则表示的是由rbm来产生v了,所以这时候返回的是t时刻的v和u,以及
    # 迭代过程中输入端的变换过程updates
    def recurrence(v_t, u_tm1):
        bv_t = bv + T.dot(u_tm1, Wuv)
        bh_t = bh + T.dot(u_tm1, Wuh)
        generate = v_t is None
        if generate:
            v_t, _, _, updates = build_rbm(T.zeros((n_visible,)), W, bv_t, #第一个参数应该是v,因此这里的v是0
                                           bh_t, k=25)
        u_t = T.tanh(bu + T.dot(v_t, Wvu) + T.dot(u_tm1, Wuu))
        return ([v_t, u_t], updates) if generate else [u_t, bv_t, bh_t]

    # For training, the deterministic recurrence is used to compute all the
    # {bv_t, bh_t, 1 <= t <= T} given v. Conditional RBMs can then be trained
    # in batches using those parameters.
    (u_t, bv_t, bh_t), updates_train = theano.scan( #训练rbm过程的符号表达式(每次只包括25步的Gibbs采样)
        lambda v_t, u_tm1, *_: recurrence(v_t, u_tm1),
        sequences=v, outputs_info=[u0, None, None], non_sequences=params)
    v_sample, cost, monitor, updates_rbm = build_rbm(v, W, bv_t[:], bh_t[:],
                                                     k=15)
    updates_train.update(updates_rbm)

    # symbolic loop for sequence generation
    (v_t, u_t), updates_generate = theano.scan(
        lambda u_tm1, *_: recurrence(None, u_tm1),#进行generate产生过程的符号表达式,迭代200次
        outputs_info=[None, u0], non_sequences=params, n_steps=200)

    return (v, v_sample, cost, monitor, params, updates_train, v_t, #cost在build_rbm()中产生
            updates_generate)


class RnnRbm: #两个功能,训练RNN-RBM模型和用训练好的RNN-RBM模型来产生样本
    '''Simple class to train an RNN-RBM from MIDI files and to generate sample
sequences.'''

    def __init__(self, n_hidden=150, n_hidden_recurrent=100, lr=0.001, 
                 r=(21, 109), dt=0.3):
        '''Constructs and compiles Theano functions for training and sequence
generation.

n_hidden : integer
  Number of hidden units of the conditional RBMs.
n_hidden_recurrent : integer
  Number of hidden units of the RNN.
lr : float
  Learning rate
r : (integer, integer) tuple
  Specifies the pitch range of the piano-roll in MIDI note numbers, including
  r[0] but not r[1], such that r[1]-r[0] is the number of visible units of the
  RBM at a given time step. The default (21, 109) corresponds to the full range
  of piano (88 notes).
dt : float
  Sampling period when converting the MIDI files into piano-rolls, or
  equivalently the time difference between consecutive time steps.'''

        self.r = r
        self.dt = dt
        (v, v_sample, cost, monitor, params, updates_train, v_t,
         updates_generate) = build_rnnrbm(r[1] - r[0], n_hidden, #在该函数里面有设置迭代次数等参数
                                           n_hidden_recurrent)

        gradient = T.grad(cost, params, consider_constant=[v_sample])
        updates_train.update(((p, p - lr * g) for p, g in zip(params,
                                                                gradient))) #sgd算法,利用公式4的cost公式搞定8个参数的更新
        self.train_function = theano.function([v], monitor,
                                               updates=updates_train)
        self.generate_function = theano.function([], v_t, #updates_generate步骤在build_rnnrbm()中产生,音乐的产生主要在那函数中
                                                 updates=updates_generate)

    def train(self, files, batch_size=100, num_epochs=200):
        '''Train the RNN-RBM via stochastic gradient descent (SGD) using MIDI
files converted to piano-rolls.

files : list of strings
  List of MIDI files that will be loaded as piano-rolls for training.
batch_size : integer
  Training sequences will be split into subsequences of at most this size
  before applying the SGD updates.
num_epochs : integer
  Number of epochs (pass over the training set) performed. The user can
  safely interrupt training with Ctrl+C at any time.'''

        assert len(files) > 0, 'Training set is empty!' \
                               ' (did you download the data files?)'
        dataset = [midiread(f, self.r,
                            self.dt).piano_roll.astype(theano.config.floatX)
                   for f in files] #读取midi文件

        try:
            for epoch in xrange(num_epochs): #训练200次
                numpy.random.shuffle(dataset) #将训练样本打乱
                costs = []

                for s, sequence in enumerate(dataset): #返回的s是序号,sequence是dataset对应序号下的值
                    for i in xrange(0, len(sequence), batch_size):
                        cost = self.train_function(sequence[i:i + batch_size]) #train_function在init()函数中
                        costs.append(cost)

                print 'Epoch %i/%i' % (epoch + 1, num_epochs),
                print numpy.mean(costs) 
                sys.stdout.flush()

        except KeyboardInterrupt:
            print 'Interrupted by user.'

    def generate(self, filename, show=True):
        '''Generate a sample sequence, plot the resulting piano-roll and save
it as a MIDI file.

filename : string
  A MIDI file will be created at this location.
show : boolean
  If True, a piano-roll of the generated sequence will be shown.'''

        piano_roll = self.generate_function() #直接生成piano roll文件
        midiwrite(filename, piano_roll, self.r, self.dt)#将piano_roll文件转换成midi文件并保存
        if show:
            extent = (0, self.dt * len(piano_roll)) + self.r
            pylab.figure()
            pylab.imshow(piano_roll.T, origin='lower', aspect='auto',
                         interpolation='nearest', cmap=pylab.cm.gray_r,
                         extent=extent)
            pylab.xlabel('time (s)')
            pylab.ylabel('MIDI note number')
            pylab.title('generated piano-roll')


def test_rnnrbm(batch_size=100, num_epochs=200):
    model = RnnRbm()
    #os.path.dirname(__file__)为获得当前文件的目录,os.path.split(path)是将path按照最后一个斜线分成父和子的部分
    re = os.path.join(os.path.split(os.path.dirname(__file__))[0], #该代码完成的功能是,找到当前文件的上级目录下的/data/Nottinghan/train/*.mid文件
                      'data', 'Nottingham', 'train', '*.mid') #re得到该目录下的所有.mid文件
    model.train(glob.glob(re),#glob.glob()只是将文件路径名等弄成linux的格式
                batch_size=batch_size, num_epochs=num_epochs)
    return model

if __name__ == '__main__':
    model = test_rnnrbm() #该函数主要用来训练RNN-RBM参数
    model.generate('sample1.mid') #产生数据的v_t初始化都是0
    model.generate('sample2.mid')
    pylab.show()

实验总结:

关于bp算法:由于RNN-RBM中对loss函数求导用到了BPTT(back propgation through time)算法:BP算法加入了时间维度。为了加深对BP算法的理解,重新看了一遍推导过程。bp算法的推导过程是主要是由求导中的链式法则得到的。具体算法可参考Martin T.Hagan 的《神经网络设计》第11章(这本书写得不错,翻译得也还可以)。其思想大概为:损失函数F对第m层wij(连接第m层第i个节点和第m-1层第j个节点之间的权值)的导数等于F对第m层第i个节点输入值的导数,乘上该输入值对wij的导数(很容易知道这个导数等于第m-1层第j个节点的输出值)。而F对第m层第i个节点输入值的导数值又等于F对第m+1层输入值的导数(这时需要考虑第m+1中所有的节点)乘以第m+1层输入值对第m层第i个输入值的导数(这个导数值很容易由激发函数的导函数求得),并且我们通常说的bp算法是误差方向传播,这里的第m层误差指的就是F对第m层输入值的导数。由此可知,可以从最后一层依次往前求解,这就是bp算法的思想,本质上是高数里面的链式求导法则。

另外,实验中关于乐理对应的具体细节没有深究。

 

参考资料:

http://deeplearning.net/tutorial/rnnrbm.html(教程主页)

《神经网络设计》,Martin T.Hagan.

http://www.cse.unsw.edu.au/~waleed/phd/html/node37.html(RNN图片来源1)

Recurrent Neural Networks in Ruby.(RNN图片来源2)

Learning Recurrent Neural Networks with Hessian-Free Optimization, James Martens,Ilya Sutskever.

Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription, Nicolas Boulanger-Lewandowski,Yoshua Bengio,Pascal Vincent.

http://www-etud.iro.umontreal.ca/~boulanni/icml2012(rnn-rbm项目主页)

转自: 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet

发布者

David 9

邮箱:yanchao727@gmail.com 微信: david9ml

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注