AAAI 2017论文精选#1— 用物理学和域知识训练“无标注样本的”神经网络( Outstanding Paper Award 优秀论文奖)

婴儿的基因里似乎有很高级的先验,他们自出生开始就运用自己的先验自主学习这个物质世界,而且成长迅速。— David 9

AAAI 英文全称是「National Conference of the Association for the Advance of Artificial Intelligence」,中文为「美国人工智能协会」年会,成立于 1979 年,今年2017已经举办到了第 31 届。

AAAI年会. 是一个很好的会议, 但其档次不稳定, 因为它的开法完全受 IJCAI制约: 每年开, 但如果这一年的 IJCAI在北美举行, 那么就停开. 所以, 偶数年里因为没有IJCAI, 它就是最好的AI综合性会议, 但因为号召力毕竟比IJCAI要小一些, 特别是欧洲人捧AAAI场的比IJCAI少得多(其实亚洲人也是), 所以比IJCAI还是要稍弱一点; 在奇数年, 如果IJCAI不在北美, AAAI自然就变成了比IJCAI低一级的会议, 例如2005年既有IJCAI又有AAAI, 两个会议就进行了协调, 使得IJCAI的录用通知时间比AAAI的deadline早那么几天, 这样IJCAI落选的文章 可以投往AAAI.在审稿时IJCAI 的 PC chair也在一直催, 说大家一定要快, 因为AAAI 那边一直在担心IJCAI的录用通知出晚了AAAI就麻烦了.

AAAI 2017结束不久,今天我们来研究2017的优秀论文奖:Label-Free Supervision of Neural Networks with Physics and Domain Knowledge

没错,这篇论文可以运用到自动驾驶中,因为自动驾驶的环境有太多无样本标注的情况出现,没有人能对所有突发路况都事先了如指掌。这就是本论文最大应用价值之一。

借助高级的先验,进行无样本标注的训练,至少有两点好处:

  1. 省去了人工标注样本的人工成本。
  2. 高级的先验,可以在许多神经网络中复用,用来预训练。大大提高复用性和泛函能力。

继续阅读AAAI 2017论文精选#1— 用物理学和域知识训练“无标注样本的”神经网络( Outstanding Paper Award 优秀论文奖)

深度 | 对比深度学习十大框架:TensorFlow最流行但并不是最好

本文经 机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载
选自Medium
机器之心编译参与:吴攀、朱思颖、李亚洲

2016 年已经过去,BEEVA Labs 数据分析师 Ricardo Guerrero Gomez-Ol 近日在 Medium 上发表了一篇文章,盘点了目前最流行的深度学习框架。为什么要做这一个盘点呢?他写道:「我常听到人们谈论深度学习——我该从哪里开始呢?TensorFlow 是现在最流行的吧?我听说 Caffe 很常用,但会不会太难了?在 BEEVA Labs,我们常常需要应对许多不同的深度学习库,所以我希望能够将我们的发现和感想分享出来,帮助那些刚刚进入深度学习这一美丽世界的人。」

TensorFlow

链接:https://www.tensorflow.org/

对于那些听说过深度学习但还没有太过专门深入的人来说,TensorFlow 是他们最喜欢的深度学习框架,但在这里我要澄清一些事实。

在 TensorFlow 的官网上,它被定义为「一个用于机器智能的开源软件库」,但我觉得应该这么定义:TensorFlow 是一个使用数据流图(data flow graphs)进行数值计算的开源软件库。在这里,他们没有将 TensorFlow 包含在「深度学习框架」范围内,而是和 Theano 一起被包含在「图编译器(graph compilers)」类别中。 继续阅读深度 | 对比深度学习十大框架:TensorFlow最流行但并不是最好

Supervised Word Mover’s Distance (可监督的词移距离) – NIPS 2016论文精选#2

如果抽象能力足够强, 世间一切关系, 是否都能用距离(Distance)表达? — David 9

接着上一讲, 今天是David 9 的第二篇”NIPS 2016论文精选”: Supervised Word Mover’s Distance (可监督的词移距离). 需要一些nlp自然语言处理基础, 不过相信David 9的直白语言可以把这篇论文讲清晰.

首先, 整篇论文的最大贡献是: 为WMD(词移距离) 提出一种可监督训练的方案, 作者认为原来的WMD距离算法不能把有用的分类信息考虑进去, 这篇论文可以填这个坑 !

但是, 究竟什么是Word Mover’s Distance(WMD) ? 这还得从word2vec说起:

还记得这张图吧? 在 “究竟什么是Word2vec ?” 这篇文章中我们谈到过word2vec其实是 继续阅读Supervised Word Mover’s Distance (可监督的词移距离) – NIPS 2016论文精选#2