如果AI的本质是在可接受时间内搜索到最优解,那么容易定义最优解的问题都是AI可以解决的。这样,人类的“情感”看起来如此“珍贵”,因为它很难用人工定义“最优解” — David 9
相信大家还记得2017年初人工智能Libratus完胜德州扑克顶级玩家的事,年底卡耐基梅隆大学(CMU)在NIPS 2017上公开这一贡献并获得最佳论文奖。这一进展之所以让人兴奋,是因为它为不完美信息博弈(Imperfect-Information Games)问题提供了新的解决思路:
像棋类游戏,双方都是共享一切信息的,这种博弈称为完美信息博弈。而扑克类,谈判,商业决策等类似问题,双方的信息都是不公开给对方的,这就提高了AI算法搜索最优解的难度。
对于完美信息博弈,每一步Action引出下一步子状态,接下来在子状态中求解最优解即可:
对于不完美信息博弈,我们不能安心地解决眼前的子问题,因为我们同时必须考虑:“对手的手牌现在会是什么样的?”,“他下一次会用什么策略?”等等烦人的问题,因此许多平行的子问题是我们必须同时考虑的:
继续阅读德州扑克AI(Libratus)的背后:不完美信息博弈中,求解安全嵌套的子博弈, #NIPS 2017最佳论文奖