“不变信息聚类”:满足你对无监督深度聚类的一点幻想,Invarient Information Clustering 深度网络 @牛津大学

人类是如此擅长“无监督”,以至于我们经常用肤浅的认知作出荒谬的结论 — David 9

人类擅长“无监督”,往往是因为“滥用”过往的经验妄下结论; 而AI模型的“无监督”,是对数据“妄下”的结论。自从有了深度网络的“大锤”,曾经传统聚类的钉子(k-means, 谱聚类等)似乎都被敲了一遍。

图像聚类和图像分割的无监督,来自:https://arxiv.org/pdf/1807.06653.pdf

而强行结合传统聚类的深度学习方法,缺乏语义过滤,谁能保证选取的特征都是对聚类任务有意义的?(回过头还得做PCA和白化)

别忘了,人类妄下的结论,都是有语义因果(我们有内在逻辑)。而机器对数据妄下的结论,缺乏因果联系。

为了摒弃传统聚类和神经网络的强拼硬凑,IIC(不变信息聚类)被提出 。IIC没有用传统聚类,而是对CNN稍作改动,用互信息最大化目标函数双输入two head)CNN的架构:

IIC架构,来自:https://arxiv.org/pdf/1807.06653.pdf

重要的地方有3点,

一, CNN网络用了双输入(不要误以为用了两个CNN,注意虚线部分是共享权重的)。为了做到无监督,模型每拿到一张图片x,都对这张图片做一次转换操作(平移、旋转或crop)得到另一张图片x’ 。因此,训练时是两次正向传播 + 一次反向传播的模式,把x,x’两张图片的两个输出zz’一次性得到再做loss计算。

继续阅读“不变信息聚类”:满足你对无监督深度聚类的一点幻想,Invarient Information Clustering 深度网络 @牛津大学

CVPR2018精选#1: 无监督且多态的图片样式转换技术,康奈尔大学与英伟达新作MUNIT及其源码

所谓无监督学习,只是人类加入了约束和先验逻辑的无监督 — David 9

更新:有同学发现这篇文章可能并没有在CVPR2018最终录取名单(只是投稿),最终录取名单参考可以看下面链接:

https://github.com/amusi/daily-paper-computer-vision/blob/master/2018/cvpr2018-paper-list.csv

最近图片生成领域正刮着一股“无监督”之风,David 9今天讲Cornell大学与英伟达的新作,正是使无监督可以生成“多态”图片的技术,论文名:Multimodal Unsupervised Image-to-Image Translation (MUNIT)。

这股“无监督”之风的刮起,只是因为我们发现用GAN结合一些人为约束和先验逻辑,训练时无需监督图片配对,直接在domain1domain2中随机抽一些图片训练,即可得到样式转换模型。这些约束和先验有许多做法,可以迫使样式转换模型(从domain1到domain2)保留domain1的一些语义特征;也可以像CycleGAN的循环一致约束,如果一张图片x从domain1转换到domain2变为y,那么把y再从domain2转换回domain1变为x2时,x应该和x2非常相似和一致:

来自CycleGAN:https://arxiv.org/pdf/1703.10593.pdf

而这些无监督方法有一个缺陷:不能生成多样(多态)的图片MUNIT正是为了解决这一问题提出的,因为目前类似BicycleGAN的多态图片生成方法都需要配对监督学习。

MUNIT为此做了一些约束和假设,如,假设图片有两部分信息:内容c样式s,另外,图片样式转换时domain1和domain2是共享内容c的信息空间的:

MUNIT的自编码器

生成图片时,把同一个内容c和不同样式s组合并编码输出,就可生成多态的图片:

来自:https://arxiv.org/pdf/1804.04732.pdf

实际训练时,我们需要两个自编码器,分别对应domain1和domain2: 继续阅读CVPR2018精选#1: 无监督且多态的图片样式转换技术,康奈尔大学与英伟达新作MUNIT及其源码