David9的普及贴:机器视觉中的平均精度(AP), 平均精度均值(mAP), 召回率(Recall), 精确率(Precision), TP,TN,FP,FN

召回率和准确率就像你去赌场要同时带着“票子”和“运气” — David 9

在机器学习面试中,经常会问道“召回率”“准确率”的区别 。 其实,就像你去赌场下注一样,如果你“票子”很多,可以把钱分摊在不同的赌注上,总有一个赌注会猜对,当你猜对了,就是一次“召回”了; 而“准确率”不关注你下多少注,好似你在赌场碰“运气”,下注越多,越能看出你今天的“运气”。

因此,你猜的次数越多自然有较大的召回,当然最好的情况是,你猜测很少次数就能召回所有。

计算召回率(Recall) 和 精确率(Precision) 时,人们一般会先搬出TP(True positive),TN(True negative),FP(False positive),FN(False negative )的概念:

                     Condition: A        Not A

  Test says “A”      True positive   |   False positive
                     ----------------------------------
  Test says “Not A”  False negative  |    True negative

然后给出公式:

召回率 Recall = TP / (TP + FN)

准确率 Precision = TP / (TP + FP)

事实上,不用硬背公式。两者的抽样方式就很不同: 召回率的抽样是每次取同一标签中的一个样本,如果预测正确就计一分;准确率的抽样是每次取你已预测为同一类别的一个样本,如果预测正确就计一分。这里一个关键点是:召回率是从数据集的同一标签的样本抽样;而准确率是从已经预测为同一类别的样本抽样。召回率和准确率都可以只针对一个类别。 继续阅读David9的普及贴:机器视觉中的平均精度(AP), 平均精度均值(mAP), 召回率(Recall), 精确率(Precision), TP,TN,FP,FN

一维卷积在语义理解中的应用,莫斯科物理技术学院(MIPT)开源聊天机器人DeepPavlov解析及代码

莫斯科物理技术学院(MIPT)前不久开源了聊天机器人DeepPavlov(基于TensorFlow和Keras),对于有志学习NLP的同学是个不错的借鉴。其中的语义理解分类模块,不是采用的马尔科夫随机场(CRF)或RNN, 而是使用一维卷积去做语义分类:

来自:https://arxiv.org/pdf/1408.5882.pdf

这一模型是来自纽约大学的论文:Convolutional Neural Networks for Sentence Classification,用一维卷积为句子的语义分类。

值得注意的是,上图模型中,第一层句子的词嵌入输入(embedding)并不是单个通道,而是两个通道的。每个通道用相同的word2vec的embedding方法初始化(表征同一个句子),有意思的是,文章指出,把其中一个通道的词表征静态化(static),而另一个通道的词表征设为可训练的(non-static),这样两个通道组合在一起可以有更好效果。 继续阅读一维卷积在语义理解中的应用,莫斯科物理技术学院(MIPT)开源聊天机器人DeepPavlov解析及代码

你想要的神经网络自动设计,谷歌大脑帮你实现了:用参数共享高效地搜索神经网络架构(ENAS)

所有高级的创造,似乎都有一些“搜索”和“拼凑”的“智能” — David 9

模型自动设计已经不是新鲜事(H2O 的AutoML谷歌的CLOUD AUTOML)。但是,高效的神经网络自动设计还是一个较有挑战性的课题(单纯用CV选模型太耗时间) 。谷歌大脑的这篇新论文就提供了一种高效的搜索方法,称之为:Efficient Neural Architecture Search(ENAS)

对于老版本强化学习的NAS,需要21天搜索出的cnn模型,ENAS只需要3小时就可以搜索出相同准确率的模型:

例子:对于CIFAR-10数据集ENAS搜索出的具有4.23%错误率的模型,只需要3小时左右。 来自:https://arxiv.org/pdf/1802.03268.pdf

作者把这样的效率提高归功于候选子模型的参数共享上(相似子模型可以模仿迁移学习使用已有的权重,而不需要从头训练)。

为简单起见,我们先从生成四个计算节点的RNN循环神经网络进行解释:

来自:https://arxiv.org/pdf/1802.03268.pdf

即使是只有四个计算节点的RNN,也有多种有向无环图(DAG)的生成可能,如上左图,红色的箭头生成的RNN才是我们在右图中看到RNN。 继续阅读你想要的神经网络自动设计,谷歌大脑帮你实现了:用参数共享高效地搜索神经网络架构(ENAS)