最近读到一篇来自慕尼黑工业大学的论文”A Tour of TensorFlow” , 内容比Tensorflow官方文档更全面深刻, 所以把自己的一些读后心得分享给大家. 做成两次博客. 下一讲会在不久后更新.
首先TensorFlow框架大名鼎鼎大家一定听说过,第一, 比较新,第二,是Google开源的大项目,来看看TensorFlow在历史上机器学习时间线:
TensorFlow是不是挺年轻?但是它的名气自发布以来没有下降的态势,相反,很多人把它称作机器学习界的“Android”。可见这个框架多么受人爱戴。
切入正题,TensorFlow是一个全面的可扩展框架,它试图能够支持任何机器学习,建模算法,而且它现在已经支持分布式计算模型。当然,想象空间还不仅这些,怪不得那些人叫它机器学习界的“Android”。
TensorFlow最大的亮点之一是它的抽象编程模型。它使用的流图计算框架是其他机器学习框架中很少见的。因而,执行模型,优化方式等等都和其他框架有所不同:
1. 流图计算框架
先上一张TensorFlow官网gif图,感受下:
机器模型在训练时,会有很多次迭代(比如10000次)。而每一次迭代,上图的演示就是一次迭代的过程。训练10000次,这个流图就要“流动”10000次。 继续阅读深度理解TensorFlow框架,编程原理 —— 第一讲 抽象编程模型