CVPR 2017论文精选#3 不可思议的研究: EEG脑电波深度学习在视觉分类中的应用

大脑是天然的特征提取器, 如果不能理解它, 或许可以模拟它, 它蕴含的泛化能力真是惊人 — David 9

许多人相信VR或AR硬件可能是人机交互的未来,  这些欺骗人眼睛和感官的技术, 都是来源于我们对这些感官更深层次的理解. 越是对这些感官了解透彻, 越是容易创造出魔法般的人机交互. 今天David 9想要分析的论文就和感官交互有关, 特别之处是它是人体最复杂的感官 — 大脑 .

很难想象今年CVPR上竟然有这样一篇近乎科幻不可思议的研究, 相信读完你也会兴奋的.

这篇文章本质上的研究, 是从EEG脑电波提取视觉特征, 从而进行我们常见的视觉分类任务(狗? 吉他? 鞋子? 披萨?):

来自: https://www.youtube.com/watch?v=9eKtMjW7T7w&t=343s

最后一层全连接层做的视觉分类任务是非常常见的.

不同的是前面层不再是从头训练Alexnet, GoogleNet或者VGG, 也不是预训练的神经网络. 而是通过收集脑电波信息, 分析脑电波提取的抽象特征. 继续阅读CVPR 2017论文精选#3 不可思议的研究: EEG脑电波深度学习在视觉分类中的应用

CVPR 2017论文精选#2 密集连接的卷积网络DenseNet(Best paper award 最佳论文奖)

如果大脑中的每个神经元都代表一些训练参数,那么,我们在不断的学习过程中,现有的神经元够用吗?大脑是如何优化参数效率的? — David 9

这届CVPR上的两篇最佳论文中, David 9更欣赏康奈尔大学和清华大学的密集连接卷积网络DenseNet(Densely Connected Convolutional Networks) , 内容有料,工作踏实 !我们在之前文章就提到,模型泛化能力的提高不是一些普通的Tricks决定的,更多地来源于模型本身的结构。

CNN发展至今,人们从热衷于探索隐式正则方法(Dropout, Batch normalization等等),到现在开始逐渐关注模型本身结构的创新。这是一个好现象。

密集连接卷积网络DenseNet正是试图把跳层连接做到极致的一种结构创新:

图1-密集连接模块,来自:https://arxiv.org/pdf/1608.06993.pdf

跳层连接方法是对中间层输出特征图信息的探索,之前的ResNets和Highway Networks都曾使用,把前层的输出特征图信息直接传递到后面的一些层,可以有效地提高信息传递效率和信息复用效率。 继续阅读CVPR 2017论文精选#2 密集连接的卷积网络DenseNet(Best paper award 最佳论文奖)

机器视觉 目标检测补习贴之YOLO实时检测, You only look once

机器视觉是一场科学家与像素之间的游戏 — David 9

上一期,我们已经介绍了R-CNN系列目标检测方法(R-CNN, Fast R-CNN, Faster R-CNN)。事实上,R-CNN系列算法看图片做目标检测,都是需要“看两眼”的. 即,第一眼 做 “region proposals”获得所有候选目标框,第二眼 对所有候选框做“Box Classifier候选框分类”才能完成目标检测:

事实上“第一眼”是挺费时间的,可否看一眼就能得到最后的目标检测结果?达到实时检测的可能? 答案是肯定的,这也是我们要讲YOLO的由来 — You only look once !

YOLO能够做到在输出中同时包含图片bounding box(检测框)的分类信息位置信息:  继续阅读机器视觉 目标检测补习贴之YOLO实时检测, You only look once