GAN和VAE都out了?理解基于流的生成模型(flow-based): Glow,RealNVP和NICE,David 9的挖坑贴

生成模型一直以来让人沉醉,不仅因为支持许多有意思的应用落地,而且模型超预期的创造力总是让许多学者和厂商得以“秀肌肉”:

OpenAI Glow模型生成样本样例,在隐空间控制图像渐变

了解基于流的生成模型(flow-based)前,先回顾目前主流的两类生成模型GAN和VAE,David 9文章早已介绍过

VAE与GAN结构比较

GAN简单粗暴,用两个深度网络(判别器D和生成器G)交替学习使得生成器G可以模拟现实生成样本,但是缺陷也是明显的:GAN不能直接了当地给出一个样本的隐分布的表征(你可以生成一个明星,但是你无法马上生成一个“微笑的”或“年轻的”明星),即,你很难用隐变量随意操纵生成的样本,你只知道生成的是任意样本(除非你重新设计GAN,像我们以前谈到的cGAN或者FaderNetworks等等。。)

VAE思路就完全不同,它继承了古老的贝叶斯理论,相信一切的创造可以用抽样后验概率来缔造。

你想创造新样本?好的,但是真实分布空间X 太复杂了,我们先意淫一个后验空间Z吧: 继续阅读GAN和VAE都out了?理解基于流的生成模型(flow-based): Glow,RealNVP和NICE,David 9的挖坑贴

从SRU小小的学术争议,可以学到什么?关于SRU简单循环单元,David 9 有几点想说

人类只是不择手段存活的预设算法,他们以为设计精密就能发号施令,但他们只是“乘客” — 《西部世界》

前不久SRU(简单循环单元)遭到了Quasi-RNN 的质疑,认为SRU只是Quasi-RNN的卷积窗口为1时的特殊情况,原帖在这里(需要梯子):

www.facebook.com/cho.k.hyun/posts/10208564563785149

SRU作者自己的解释在这里(不要梯子):

https://www.zhihu.com/question/65244705/answer/229364472

就争议本身David 9 不做任何评判,毕竟,一旦开始辩驳,人类就会不自觉地向着自己的利益方向靠近, 正如《西部世界》里所说:“人类只是不择手段存活的预设算法 ”

David 9 不喜欢八卦

所以,从这起小小的学术争议,David 9关注的是,我们可以学到什么 ?这里记录一下我的总结:

1. 论文起名要简洁,意图要清晰。

为什么之前Quasi-RNN没有火一把,而SRU却在社交网络上传了那么远?许多人忽略的一点是,SRU起名很好很简洁。如果作者起名叫“Yet another simple RNN acceleration method” ,恐怕就没人凑热闹了。SRU还能让人联想到GRU,会不会是下一代GRU呢?一些不明真相的网友就蠢蠢欲动了。

所以,写文章前,有必要想个好名字,让大家快速了解你的工作,为你传播。(不要刻意营销就好)

2. 论文要和相似idea的文章做充分对比,提前指出自己工作中非常不同的那一部分。 继续阅读从SRU小小的学术争议,可以学到什么?关于SRU简单循环单元,David 9 有几点想说

高阶Numpy扩展库与API盘点:在ndarray上直接进行多核分布式、GPU利用、稀疏处理和自动求导,那些你不知道的ndarray扩展操作

软件演进和生物进化一样,没人可以预测下一步走向哪里,我们只知道,它需要人类的脑力和贪婪去喂养 — David 9

谁也没有想到30年前Guido写的Python因为通俗易用、丰富的联网支持,变为现在数据科学家最喜爱的工具语言之一。甚至小小的代数计算库Numpy会涌现如此多的扩展库和矛盾。

有人认为,长颈鹿之所以进化时如此过度关注脖子长度(其实适当高度就足够了),只是因为母长颈鹿认为雄长颈鹿脖子越长越有性魅力(种内竞争)

软件进化也类似,人类社区中那些勤劳的开发者努力让Numpy支持各种场景(多核分布式、GPU利用、稀疏处理和Autograd ),解决各种矛盾(ndarray不兼容,numpy插件系统不到位)。但是,他们的汗水都是基于Python这个“种族”进化的,种内竞争激烈不一定能保证软件的发展方向好 。。。

扯远了。。今天还是想盘点高阶Numpy扩展库与API ,毕竟许多人不满足于基础的numpy代数计算。比如下面这些场景(重写库)

  • CuPy: 实现Numpy有的API ,保证所有计算可以在CUDA GPU上加速
  • Sparse: 对于稀疏的ndarray(许多元素是0的情况), 重写实现Numpy的API(更高效)
  • Dask array: 对于多核或者多机器的工作站,为了可以分布式或者多核,又重写Numpy API ,所以有了这个库

最简单的例子大概是这样的:

import numpy as np
x = np.random.random((2,3))  # 在一个cpu上跑 
y = x.T.dot(np.log(x) + 1)
z = y - y.mean(axis=0)
print(z[:5])

import cupy as cp
x = cp.random.random((2,3))  # 在GPU上跑
y = x.T.dot(cp.log(x) + 1)
z = y - y.mean()
print(z[:5].get())

import dask.array as da
x = da.random.random((2,3))  # 在许多cpu上跑
y = x.T.dot(da.log(x) + 1)
z = y - y.mean(axis=0)
print(z[:5].compute())

默默妈卖批,这帮人就不知道合作一下合成一个库吗? 继续阅读高阶Numpy扩展库与API盘点:在ndarray上直接进行多核分布式、GPU利用、稀疏处理和自动求导,那些你不知道的ndarray扩展操作