端到端基于模型的GAIL对抗模仿学习,Model-based GAIL,David 9的填坑贴

嘿,你这个叫GAIL小家伙,跟着大人学的时候,自己也要看看下一步— David 9

接着上次的GAIL讨论(GAN+增强学习),我们还有一个坑未填。即,基于模型的GAIL对抗模仿学习。首先回顾一下强化学习的简单体系:

1. 如果RL(强化学习)训练中给出回报(reward),其算法有我们熟悉的价值迭代value iteration算法和策略policy iteration算法,以及DPL(Direct Policy Learning假设一个policy)。

2. 如果没有明确回报(reward)给出,就涉及到更有意思的模仿学习IRL(Inverse Reinforcement Learning)。 一个实际的例子就是上次聊到的GAIL算法,简单说是假设回报函数,用GAN去识别目前的策略是否符合假设的回报函数(应有的策略):

来自论文:http://proceedings.mlr.press/v70/baram17a/baram17a.pdf

此处GAIL就产生一个问题,如上图,GAN判别器D可以判别生成器的策略被模仿对象(专家策略)之间的区别,但是,当把行为错误δa反向传播时,只能估算一个大概的梯度δHV 给生成器(往往不稳定并且高方差的)。这就导致一个很明显的漏洞,这个判别器D只能根据当前的行为a被模仿者的状态x1模仿者的状态x2做判别,如果模仿者和被模仿者像下面这样:

继续阅读端到端基于模型的GAIL对抗模仿学习,Model-based GAIL,David 9的填坑贴

GAN+增强学习, 从IRL和模仿学习, 聊到TRPO算法和GAIL框架, David 9来自读者的探讨,策略学习算法填坑与挖坑

如果你想成为大师,是先理解大师做法的底层思路,再自己根据这些底层思路采取行动? 还是先模仿大师行为,再慢慢推敲大师的底层思路?或许本质上,两种方法是一样的。 — David 9

聊到强人工智能,许多人无疑会提到RL (增强学习) 。事实上,RL和MDP(马尔科夫决策过程) 都可以归为策略学习算法的范畴,而策略学习的大家庭远远不只有RL和MDP:

来自:https://www.slideshare.net/samchoi7/recent-trends-in-neural-net-policy-learning

我们熟知的RL是给出行为reward(回报)的,最常见的两种RL如下

1. 可以先假设一个价值函数(value function)然后不断通过reward来学习更新使得这个价值函数收敛。价值迭代value iteration算法和策略policy iteration算法就是其中两个算法(参考:what-is-the-difference-between-value-iteration-and-policy-iteration)。之前David 9也提到过价值迭代:NIPS 2016论文精选#1—Value Iteration Networks 价值迭代网络继续阅读GAN+增强学习, 从IRL和模仿学习, 聊到TRPO算法和GAIL框架, David 9来自读者的探讨,策略学习算法填坑与挖坑

聊聊目标检测中的多尺度检测(Multi-Scale),从YOLO,ssd到FPN,SNIPER,SSD填坑贴和极大极小目标识别

狙击手在放大倍焦前已经经历了大量的小目标训练,这样看似乎是RPN做的好 — David 9

之前在讲SSD时我们聊过SSD的目标检测是如何提高多尺度(较大或较小)物体检测率的。我们来回顾一下,首先,较大的卷积窗口可以卷积后看到较大的物体, 反之只能看到较小的图片. 想象用1*1的最小卷积窗口, 最后卷积的图片粒度和输入图片粒度一模一样. 但是如果用图片长*宽 的卷积窗口, 只能编码出一个大粒度的输出特征.

对于yolov1,每层使用同样大小的卷积窗口, 识别超大物体或者超小物体就变得无能为力(最后一层的输出特征图是固定7*7):

YOLO架构示意图

SSD就更进一步,最后一层的检测是由之前多个尺度(Multi-Scale)的特征图共同生成的:

SSD架构示意图

这样SSD在计算复杂度允许的情况下,在多尺度物体的检测上有所提高。但是SSD也有明显缺陷,其最后几层的所谓“多尺度”是有限的(如上图特征图尺寸越小,可以识别的物体越大)。对于极小的目标识别,SSD就显得无能为力了继续阅读聊聊目标检测中的多尺度检测(Multi-Scale),从YOLO,ssd到FPN,SNIPER,SSD填坑贴和极大极小目标识别