CVPR2019:好的模型,迁移学习效果就更好吗?Google Brain最新结论

特征工程的下一步可能是如何直接操控特征(同域或不同域),而不仅仅是特征选择或特征过滤 — David 9

相信很多初学迁移学习的朋友心里一直有个疑问:迁移学习的模型真的对新应用效果也好吗?更好的迁移模型,在其他应用上表现效果也更好吗?

根据Google Brain在CVPR 2019的研究总结,今天David偷懒一次,只说结论:

答案很大程度上是肯定的!Google Brain的大量实验证明,无论是把神经网络倒数第二层直接拿出来做预测,还是把预训练模型对新应用进行“二次训练”好的imagenet预训练模型普遍有更好的迁移学习效果

来自:《Do Better ImageNet Models Transfer Better?》

如上,左图是直接把网络倒数第二层特征直接拿出来进行迁移学习(使用Logistic Regression),右图是在新应用上find-tuned的迁移学习表现。可以注意到,只要是模型本来表现就好(横左标),迁移的效果就更好(纵坐标)。从性能最差的MobileNet到性能最好的Inception-ResNet无一例外。

但是,迁移学习并不是就无敌了。 继续阅读CVPR2019:好的模型,迁移学习效果就更好吗?Google Brain最新结论

神经网络的“刚性”(自恰性):谷歌评估泛化能力新指标,Stiffness

如果训练神经网络可以与人一样,其训练日程可以精心规划编排、且有不同的学习曲线和阶段、在不同的领域有不同“天赋”自主学习。总之,训练过程可以足够“复杂”,是否可以诱导出更好的模型? — David 9

假设神经网络有一个确切的决策边界,这个决策边界足够复杂可以帮我们分类10000+个类别,想象一下可能是这样复杂的:

但无论如何,归结到一个决策边界,是这样的:

来自:https://arxiv.org/pdf/1901.09491.pdf

对于任意新的训练样本X1,如果要让X1loss更小,需要用一个梯度g1更新网络,对决策边界的影响势必导致另一个新样本X2loss可能变小、不变变大

继续阅读神经网络的“刚性”(自恰性):谷歌评估泛化能力新指标,Stiffness

谷歌大脑的“世界模型”(World Models)与基因学的一些思考,MDN-RNN与Evolution Strategies结合的初体验与源码

我们现在看到的智能算法都不是“可生长”的,遗传算法和ES只是强调了基因的“变异”,神经网络只是固定网络结构;而生物界的基因却可以指导蛋白质构成并且“生长”。— David 9

今年上半年谷歌大脑的“世界模型”(World Models)早已引起David 9的注意,今天终于有机会和大家叨叨。对于CarRacing-v0这个增强学习经典游戏:

来自:https://github.com/AdeelMufti/WorldModels

世界模型(World Models)与其他增强学习相比有一些明显优势:

来自:https://arxiv.org/abs/1803.10122

优势的来源David 9总结有两点:1. 模型拼接得足够巧妙,2. 抓住了一些“强视觉”游戏的“痛点”。 继续阅读谷歌大脑的“世界模型”(World Models)与基因学的一些思考,MDN-RNN与Evolution Strategies结合的初体验与源码