CVPR 2017论文精选#1 用模拟+非监督对抗生成图片的增强方法进行学习(Best paper award 最佳论文奖)

人类的想象力似乎是天生的, 而现今计算机的”想象力”来自”数据增强”技术. — David 9

这届CVPR上, 苹果为博得AI界眼球, 竟然拿到了最佳论文 !  也许这篇论文没有什么深远意义,也许只能反映学术被业界商界渗透的厉害,也许有更好的文章应该拿到最佳论文。

这又何妨, 历史的齿轮从来不会倒退, David 9看到的趋势是, 人类越来越擅长赋予计算机”想象力”, 以GAN为辅助的”数据增强”技术是开始, 但绝不是终点 !

言归正传, 来剖析这篇论文, 首先,这篇文章的目标非常清晰,就是用非监督训练集,训练一个“图片优化器”(refiner),用来优化人工模拟图片,使得这一模拟图片更像真实图片,并且具有真实图片的独特属性:

如上图,人工模拟的伪造图片(Synthetic)经过优化器Refiner变得与非监督集合(第一行的3张图片)非常相似,极大的增强了模拟图片的真实性。 继续阅读CVPR 2017论文精选#1 用模拟+非监督对抗生成图片的增强方法进行学习(Best paper award 最佳论文奖)

机器视觉 目标检测补习贴之YOLO实时检测, You only look once

机器视觉是一场科学家与像素之间的游戏 — David 9

上一期,我们已经介绍了R-CNN系列目标检测方法(R-CNN, Fast R-CNN, Faster R-CNN)。事实上,R-CNN系列算法看图片做目标检测,都是需要“看两眼”的. 即,第一眼 做 “region proposals”获得所有候选目标框,第二眼 对所有候选框做“Box Classifier候选框分类”才能完成目标检测:

事实上“第一眼”是挺费时间的,可否看一眼就能得到最后的目标检测结果?达到实时检测的可能? 答案是肯定的,这也是我们要讲YOLO的由来 — You only look once !

YOLO能够做到在输出中同时包含图片bounding box(检测框)的分类信息位置信息:  继续阅读机器视觉 目标检测补习贴之YOLO实时检测, You only look once

机器视觉目标检测补习贴之R-CNN系列 — R-CNN, Fast R-CNN, Faster R-CNN

CVPR 2017在即,David 9最近补习了目标检测的趋势研究。深度学习无疑在近年来使机器视觉和目标检测上了一个新台阶。初识目标检测领域,当然先要了解下面这些框架:

  • RCNN
  • Fast RCNN
  • Faster RCNN
  • Yolo
  • SSD

附一张发表RCNN并开启目标检测深度学习浪潮的Ross B. Girshick(rbg)男神

无论如何,目标检测属于应用范畴,有些机器学习基础上手还是很快的,所以让我们马上来补习一下!

首先什么是目标检测?目标检测对人类是如此简单:

把存在的目标从图片中找出来,就是那么简单! 继续阅读机器视觉目标检测补习贴之R-CNN系列 — R-CNN, Fast R-CNN, Faster R-CNN