最近看到一篇Quora很好地解答了机器学习界的知名高校相关问题。机器学习究竟美国哪家强? 卡内基梅隆(CMU)?斯坦福? 伯克利? 哥伦比亚? MIT?还是威斯康星?总结了所有评论,这几个名校都有大牛潜伏,但是值得注意的是,CMU有一整个机器学习系,是一个巨大的团体,其它大学也有很强的小团队, 但是团队比较小,要谨慎选择自己的感兴趣点。来看下面一些的评论:
分类: 前沿
系列论文分析预告—卡耐基梅隆大学 机器学习专业 历年最佳论文
预告:
David 9 最近翻到收藏已久的链接: 卡耐基梅隆大学机器学习专业 历年最佳论文 . 其中包括3大部分:
- “经过时间考验奖”(Test of Time Awards)
- “最佳学位论文”(Dissertation Awards)
- “最佳与亚军论文奖”(Best Paper and Runner up Awards)
David 9打算就其中有意思的内容和杰出的贡献, 做几期博客分析, 敬请期待. 继续阅读系列论文分析预告—卡耐基梅隆大学 机器学习专业 历年最佳论文
#11 基于能量模型的生成对抗网络–生成对抗网络进阶
在文章“手把手教你写一个生成对抗网络”中,我们谈到过生成对抗网络。意犹未尽的是,只是了解生成对抗网络的基本原理和算法形式,对于训练结果还没有仔细研究。
最近拜读了机器学习四大神之一Yann LeCun (燕乐存 目前在facebook就职) 今年发表的论文“ENERGY-BASED GENERATIVE ADVERSARIAL NETWORK”。基于能量模型的生成对抗网络,训练结果真的很不错。不像一般的生成网络,生成的图片像素随机性大,字体边界模糊。看下图论文在MNIST集上的比较:
左边是一般GAN(生成对抗网络)的生成数字, 右边就是论文的改进EBGAN(基于能量的生成对抗网络)。可以很明显地看出,改进的生成数字比较清晰,连接也比较流畅 。传统GAN生成的数字就比较模糊,像素连贯性较差。 继续阅读#11 基于能量模型的生成对抗网络–生成对抗网络进阶