脉冲神经网络(SNN)会是下一代神经网络吗? 知识梳理和源码解析,David 9的SNN初体验,Spiking Neural Network

Neurons that fire together wire together — Donald O. Hebb

小时候你们应该听大人说过:“脑子不用会生锈”,教导我们要多思考多练习。后来我们真的发现需要肌肉记忆的运动如篮球、高尔夫,所谓的“球感”,正应验了赫布理论那句老话:“Neurons that fire together wire together”。我们的那些神经元似乎越是频繁地连接,越是有“存在感”。甚至在训练足够多的次数后,神经元的连接如此强烈,以至于产生了条件反射。

另一方面我们的神经元可以训练并适应不同的任务,其可塑性惊人。当今所谓的神经网络不过皮毛。

今天聊的脉冲神经网络(SNN),只是弥补了神经网络中的一处不足。我们在之前的post提到过Hinton老爷子对未来神经网络的展望,其中一个重点就是目前神经网络的时间线(尺度)太少了

开始之前,先简单回顾一下神经网络的发展。

感知机(perceptron),是神经元间的直连感知

来自:https://www.youtube.com/watch?v=3JQ3hYko51Y

其中白色较亮的点是被激活(更兴奋)的神经元。

对于多层感知机,只是层数变多了,依旧是直连加反向传播

来自:https://www.youtube.com/watch?v=3JQ3hYko51Y

轮到现在流行的CNN, 只是比感知机多了卷积层:

来自:https://www.youtube.com/watch?v=3JQ3hYko51Y

到目前为止可以发现,所有连接权重的更新速度是一样的。即所有神经元的连接,在某个时间点的兴奋度低,但在下一个时间点的兴奋度可能很高!(因为反向传播才不管这么多),细想,不符合那句老话:“Neurons that fire together wire together”。此刻兴奋的神经元在下一时刻应该惯性地也比较兴奋才对继续阅读脉冲神经网络(SNN)会是下一代神经网络吗? 知识梳理和源码解析,David 9的SNN初体验,Spiking Neural Network