一项无法忽视的无监督技术:OpenAI任务通用模型GPT,GPT-2,MuseNet,Attention 模型,#David 无监督系列

看似庞大复杂的工程都来自一个简单的愿望 — David 9

人一生的行为往往由一个简单(但看似虚无)的意义驱动,而机器模型的行为由很多具体任务(实际的loss函数)驱动。于是,有的人为了“爱”可以苦费心思建成辉宏的泰姬陵 ; 而深度学习模型在不同任务间切换都如此困难。

幸运的是,多数人的愿望是AI朝着更通用(非具体)的方向发展。所以我们可期待更通用AI模型的出现。甚至David期待将来“域”通用模型的出现,这里的domain指的至少是人体五官胜任的所有任务(视觉域语言域音频域触觉域嗅觉域等

拉回现实,OpenAI在语言域GPT(GPT-2音频域MuseNet模型已经取得了广泛关注。对于通用语言模型的探索,GPT早已不是先例:

从汲取上下文关系的CoVe词向量(有监督,任务单一),到无监督预训练并且多任务通用的GPT-2 单模型“通用”的能力正在不断增强。

继续阅读一项无法忽视的无监督技术:OpenAI任务通用模型GPT,GPT-2,MuseNet,Attention 模型,#David 无监督系列

“不变信息聚类”:满足你对无监督深度聚类的一点幻想,Invarient Information Clustering 深度网络 @牛津大学

人类是如此擅长“无监督”,以至于我们经常用肤浅的认知作出荒谬的结论 — David 9

人类擅长“无监督”,往往是因为“滥用”过往的经验妄下结论; 而AI模型的“无监督”,是对数据“妄下”的结论。自从有了深度网络的“大锤”,曾经传统聚类的钉子(k-means, 谱聚类等)似乎都被敲了一遍。

图像聚类和图像分割的无监督,来自:https://arxiv.org/pdf/1807.06653.pdf

而强行结合传统聚类的深度学习方法,缺乏语义过滤,谁能保证选取的特征都是对聚类任务有意义的?(回过头还得做PCA和白化)

别忘了,人类妄下的结论,都是有语义因果(我们有内在逻辑)。而机器对数据妄下的结论,缺乏因果联系。

为了摒弃传统聚类和神经网络的强拼硬凑,IIC(不变信息聚类)被提出 。IIC没有用传统聚类,而是对CNN稍作改动,用互信息最大化目标函数双输入two head)CNN的架构:

IIC架构,来自:https://arxiv.org/pdf/1807.06653.pdf

重要的地方有3点,

一, CNN网络用了双输入(不要误以为用了两个CNN,注意虚线部分是共享权重的)。为了做到无监督,模型每拿到一张图片x,都对这张图片做一次转换操作(平移、旋转或crop)得到另一张图片x’ 。因此,训练时是两次正向传播 + 一次反向传播的模式,把x,x’两张图片的两个输出zz’一次性得到再做loss计算。

继续阅读“不变信息聚类”:满足你对无监督深度聚类的一点幻想,Invarient Information Clustering 深度网络 @牛津大学