AutoKeras:开源AutoML初体验,自动搜索和构建最优深度模型,贝叶斯搜索器,以及mnist示例代码

20 美元/时的AutoML太贵?试试AutoKeras吧

自动搜索构建深度学习模型和调参一直是数据科学家们向往的工具,而我们知道Google AI发布的AutoML是要收费的,如果想要开源的而且想要对AutoML背后技术一探究竟的,可以看看这款AutoKeras

AutoKeras开发处于初期阶段,它基于Keras(也有pytorch),而keras我们知道是基于TensorFlow,所以GPU利用可以不用担心(只要你安装了gpu版TensorFlow即可)。由于Keras代码极其简洁,autokeras上手也较容易 。

所以直接上autokeras版mnist训练代码:

from keras.datasets import mnist
from autokeras.image_classifier import ImageClassifier

if __name__ == '__main__':
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape + (1,))
    x_test = x_test.reshape(x_test.shape + (1,))

    clf = ImageClassifier(verbose=True, augment=False)
    clf.fit(x_train, y_train, time_limit=12 * 60 * 60)
    clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
    y = clf.evaluate(x_test, y_test)
    print(y * 100)

这里有几个要点,第一,代码需要在python3.6上跑否则会有兼容性问题(目前autokeras只支持python3.6), 继续阅读AutoKeras:开源AutoML初体验,自动搜索和构建最优深度模型,贝叶斯搜索器,以及mnist示例代码

GAN和VAE都out了?理解基于流的生成模型(flow-based): Glow,RealNVP和NICE,David 9的挖坑贴

生成模型一直以来让人沉醉,不仅因为支持许多有意思的应用落地,而且模型超预期的创造力总是让许多学者和厂商得以“秀肌肉”:

OpenAI Glow模型生成样本样例,在隐空间控制图像渐变

了解基于流的生成模型(flow-based)前,先回顾目前主流的两类生成模型GAN和VAE,David 9文章早已介绍过

VAE与GAN结构比较

GAN简单粗暴,用两个深度网络(判别器D和生成器G)交替学习使得生成器G可以模拟现实生成样本,但是缺陷也是明显的:GAN不能直接了当地给出一个样本的隐分布的表征(你可以生成一个明星,但是你无法马上生成一个“微笑的”或“年轻的”明星),即,你很难用隐变量随意操纵生成的样本,你只知道生成的是任意样本(除非你重新设计GAN,像我们以前谈到的cGAN或者FaderNetworks等等。。)

VAE思路就完全不同,它继承了古老的贝叶斯理论,相信一切的创造可以用抽样后验概率来缔造。

你想创造新样本?好的,但是真实分布空间X 太复杂了,我们先意淫一个后验空间Z吧: 继续阅读GAN和VAE都out了?理解基于流的生成模型(flow-based): Glow,RealNVP和NICE,David 9的挖坑贴