训练”稳定”,样本的”多样性”和”清晰度”似乎是GAN的 3大指标 — David 9
VAE与GAN
聊到随机样本生成, 不得不提VAE与GAN, VAE用KL-divergence和encoder-decoder的方式逼近真实分布. 但这些年GAN因其”端到端”灵活性和隐式的目标函数得到广泛青睐. 而且, GAN更倾向于生成清晰的图像:
GAN在10次Epoch后就可以生成较清晰的样本, 而VAE的生成样本依旧比较模糊. 所以GAN大盘点前, 我们先比较一下VAE与GAN的结构差别:
VAE训练完全依靠一个假设的loss函数和KL-divergence逼近真实分布:
GAN则没有假设单个loss函数, 而是让判别器D和生成器G之间进行一种零和博弈, 继续阅读独家 | GAN大盘点,聊聊这些年的生成对抗网络 : LSGAN, WGAN, CGAN, infoGAN, EBGAN, BEGAN, VAE