ICLR 2017论文精选#2—用半监督知识迁移增强深度学习中训练数据的隐私(Best paper award 最佳论文奖)

藏私房钱的男同胞们, 是不是先要把钱分好几份, 然后藏在房间中的不同位置 ?    现在, 这种”智慧”用在了数据隐私上 …  —— David 9

虽然本届ICLR有许多不公平的评审传言, 但是令人欣慰的是, 目前深度学习发展如此迅猛, 以至于一些好的理论文章没有通过评审, 而有用的实际应用文章又如此之多让评审员为难. 无论如何, 今天要讲的这篇论文在保护训练隐私数据上非常有用, 从而浮出水面.

这篇论文也出自Google 大脑之手, 名为: SEMI-SUPERVISED KNOWLEDGE TRANSFER FOR DEEP LEARNING FROM PRIVATE TRAINING DATA. 论文给出了一种通用性的训练隐私数据的解决方案,名为”「教师」集成模型的隐私聚合”(Private Aggregation of Teacher Ensembles/PATE),PATE 发音类似”法国肉酱”这种食物。

框架总览:

目前对于模型隐私数据的攻击威胁一般基于以下两个假设: 继续阅读ICLR 2017论文精选#2—用半监督知识迁移增强深度学习中训练数据的隐私(Best paper award 最佳论文奖)

ICLR 2017论文精选#1之颠覆三观—理解深度学习要重新审视泛化能力(Best paper award 最佳论文奖)

我似乎看到了一个未来: 机器自身不断生成全新的模型架构, 去应对各种未知的问题. —— David 9

最近是个躁动的时节(ICLR 2017, Google I/O , Openstack峰会, 微软Build 等等), David 9也有点忙晚更了, 大家见谅. 今天, 接着拿ICLR 2017的一篇最佳论文, 这篇毁三观的论文实在是忍不住要拿出来讲一下. 论文来自Google 大脑团队:

是不是看到了我们熟悉的Bengio? 但是 第一作者是MIT的实习生哦~ 是的, 其实这篇论文理论并不艰深, 亮点是实验方法颠覆三观的结论. 探讨的是机器学习界古老的话题: 泛化能力.
提到模型泛化能力, 人们一般的观念是VC维, 也就是模型越复杂(训练参数越多), 模型的泛化能力越差. 该文章用深度学习模型实验指出了这种错误观念, 事实上, 深度学习模型随着模型参数的增加, 模型依然具有一定泛化能力:

如上图, 对于一些经典深度学习网络, 我们用平均每个样本带有训练参数的数量来评价模型的复杂度, 继续阅读ICLR 2017论文精选#1之颠覆三观—理解深度学习要重新审视泛化能力(Best paper award 最佳论文奖)

用TensorFlow可视化卷积层的方法

深度学习中对于卷积层的可视化可以帮助理解卷积层的工作原理与训练状态,然而卷积层可视化的方法不只一种。最简单的方法即直接输出卷积核和卷积后的filter通道,成为图片。然而也有一些方法试图通过反卷积(转置卷积)了解卷积层究竟看到了什么。

在TensorFlow中,即使是最简单的直接输出卷积层的方法,网上的讲解也参差不齐,David 9 今天要把可运行的方法告诉大家,以免大家受到误导。

废话少说,最简单的方法在此:

如果你有一个卷积层,我们以Tensorflow自带的cifar-10训练为例子:

with tf.variable_scope('conv1') as scope:
  kernel = _variable_with_weight_decay('weights',
                                       shape=[5, 5, 3, 64],
                                       stddev=5e-2,
                                       wd=0.0)
  conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
  biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
  pre_activation = tf.nn.bias_add(conv, biases)
  conv1 = tf.nn.relu(pre_activation, name=scope.name)
  _activation_summary(conv1)

继续阅读用TensorFlow可视化卷积层的方法