#6 理解 LSTM 网络

循环神经网络(RNN)

人们的每次思考并不都是从零开始的。比如你在阅读这篇文章时,你基于对前面的文字的理解来理解你目前阅读到的文字,而不是每读到一个文字时,都抛弃掉前面的思考,从头开始。你的记忆是有持久性的。

传统的神经网络并不能如此,这似乎是一个主要的缺点。例如,假设你在看一场电影,你想对电影里的每一个场景进行分类。传统的神经网络不能够基于前面的已分类场景来推断接下来的场景分类。

循环神经网络(Recurrent Neural Networks)解决了这个问题。这种神经网络带有环,可以将信息持久化。

14585451475265 继续阅读#6 理解 LSTM 网络

#5 Deep learning RNN-RBM简单理解

前言:

本文主要是bengio的deep learning tutorial教程主页中最后一个sample:rnn-rbm in polyphonic music. 即用RNN-RBM来model复调音乐,训练过程中采用的是midi格式的音频文件,接着用建好的model来产生复调音乐。对音乐建模的难点在与每首乐曲中帧间是高度时间相关的(这样样本的维度会很高),用普通的网络模型是不能搞定的(普通设计网络模型没有考虑时间维度,图模型中的HMM有这方面的能力),这种情况下可以采用RNN来处理,这里的RNN为recurrent neural network中文为循环神经网络,另外还有一种RNN为recursive neural network翻为递归神经网络。本文中指的是循环神经网络。

 

RNN简单介绍:

首先来看RNN和普通的feed-forward网络有什么不同。RNN的网络框架如下:

23214434-ef7947ebef344d86b21e0d0550dc833d 继续阅读#5 Deep learning RNN-RBM简单理解

重要python工具-代码质量篇

作为一名开发者,无论是不是在IDE或者命令行,你应该使用那些有用的工具库武装自己。如果你没有考虑代码干净、可读和可维护性,你就很可能看不到一些工具的好处。

python禅道

% python -m this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
...

继续阅读重要python工具-代码质量篇