CVPR 2017之#CNN论文精选, PointNet:端到端3D图像(点集)分类与分割

计算机科学很大程度上是权衡“现实”和“理想”的方法学 — David 9

3D图像的分类与分割问题,虽然理想上可以用3D卷积构造深度网络,但事实上, 其巨大计算开销不允许我们直接使用卷积对3D云图集进行训练.  试想2D卷积(GoogleNet, ResNet, Alexnet)训练时间就已经让人捉急了, 何况样本是3D云图:

幸运的是现实再残酷, 人类总能找到暂时解决问题的方法, PointNet就是一个权宜之计:它实现端到端3D图像(点集)分类与分割:

论文不使用3D卷积, 而是用深度网络模拟通用对称函数

来自:https://arxiv.org/pdf/1612.00593.pdf

输入总共n个点的无序云图点集({x1,x2 … , xn}), 通用函数f 输出该云图分类(汽车,书桌,飞机)。 继续阅读CVPR 2017之#CNN论文精选, PointNet:端到端3D图像(点集)分类与分割

CVPR 2017之#RNN论文精选, 小数据学习: 基于关注点的循环比较器(Attentive Recurrent Comparators)

“小数据”激发我们从人类学习本质的角度思考问题. — David 9

如果要得到生成模型分类模型, 我们可以用GAN或CNN等深度网络. 而对于”小数据“我们往往要换一种思路, 利用RNN的”记忆”能力在图片中反复”琢磨”图像的线条等特征:

来自: https://github.com/sanyam5/arc-pytorch

通过反复寻求好的”关注点”, 我们用一张样本图片, 就能比较新图片与之差异, 以及和原图片是同一个文字的可能性. 这正是所谓的one shot learning, 即, 从一个样本学习到该样本的整个类. 没错 , “小数据”的泛化能力真是惊人 ! 甚至击败了KNNSIAMESE NETWORK等传统相似度比较方式。 继续阅读CVPR 2017之#RNN论文精选, 小数据学习: 基于关注点的循环比较器(Attentive Recurrent Comparators)

CVPR 2017论文精选#3 不可思议的研究: EEG脑电波深度学习在视觉分类中的应用

大脑是天然的特征提取器, 如果不能理解它, 或许可以模拟它, 它蕴含的泛化能力真是惊人 — David 9

许多人相信VR或AR硬件可能是人机交互的未来,  这些欺骗人眼睛和感官的技术, 都是来源于我们对这些感官更深层次的理解. 越是对这些感官了解透彻, 越是容易创造出魔法般的人机交互. 今天David 9想要分析的论文就和感官交互有关, 特别之处是它是人体最复杂的感官 — 大脑 .

很难想象今年CVPR上竟然有这样一篇近乎科幻不可思议的研究, 相信读完你也会兴奋的.

这篇文章本质上的研究, 是从EEG脑电波提取视觉特征, 从而进行我们常见的视觉分类任务(狗? 吉他? 鞋子? 披萨?):

来自: https://www.youtube.com/watch?v=9eKtMjW7T7w&t=343s

最后一层全连接层做的视觉分类任务是非常常见的.

不同的是前面层不再是从头训练Alexnet, GoogleNet或者VGG, 也不是预训练的神经网络. 而是通过收集脑电波信息, 分析脑电波提取的抽象特征. 继续阅读CVPR 2017论文精选#3 不可思议的研究: EEG脑电波深度学习在视觉分类中的应用

CVPR 2017论文精选#2 密集连接的卷积网络DenseNet(Best paper award 最佳论文奖)

如果大脑中的每个神经元都代表一些训练参数,那么,我们在不断的学习过程中,现有的神经元够用吗?大脑是如何优化参数效率的? — David 9

这届CVPR上的两篇最佳论文中, David 9更欣赏康奈尔大学和清华大学的密集连接卷积网络DenseNet(Densely Connected Convolutional Networks) , 内容有料,工作踏实 !我们在之前文章就提到,模型泛化能力的提高不是一些普通的Tricks决定的,更多地来源于模型本身的结构。

CNN发展至今,人们从热衷于探索隐式正则方法(Dropout, Batch normalization等等),到现在开始逐渐关注模型本身结构的创新。这是一个好现象。

密集连接卷积网络DenseNet正是试图把跳层连接做到极致的一种结构创新:

图1-密集连接模块,来自:https://arxiv.org/pdf/1608.06993.pdf

跳层连接方法是对中间层输出特征图信息的探索,之前的ResNets和Highway Networks都曾使用,把前层的输出特征图信息直接传递到后面的一些层,可以有效地提高信息传递效率和信息复用效率。 继续阅读CVPR 2017论文精选#2 密集连接的卷积网络DenseNet(Best paper award 最佳论文奖)

CVPR 2017论文精选#1 用模拟+非监督对抗生成图片的增强方法进行学习(Best paper award 最佳论文奖)

人类的想象力似乎是天生的, 而现今计算机的”想象力”来自”数据增强”技术. — David 9

这届CVPR上, 苹果为博得AI界眼球, 竟然拿到了最佳论文 !  也许这篇论文没有什么深远意义,也许只能反映学术被业界商界渗透的厉害,也许有更好的文章应该拿到最佳论文。

这又何妨, 历史的齿轮从来不会倒退, David 9看到的趋势是, 人类越来越擅长赋予计算机”想象力”, 以GAN为辅助的”数据增强”技术是开始, 但绝不是终点 !

言归正传, 来剖析这篇论文, 首先,这篇文章的目标非常清晰,就是用非监督训练集,训练一个“图片优化器”(refiner),用来优化人工模拟图片,使得这一模拟图片更像真实图片,并且具有真实图片的独特属性:

如上图,人工模拟的伪造图片(Synthetic)经过优化器Refiner变得与非监督集合(第一行的3张图片)非常相似,极大的增强了模拟图片的真实性。 继续阅读CVPR 2017论文精选#1 用模拟+非监督对抗生成图片的增强方法进行学习(Best paper award 最佳论文奖)

机器视觉 目标检测补习贴之SSD实时检测, Multibox Single Shot Detector

机器视觉是一场科学家与像素之间的游戏 — David 9

上一期,理解了YOLO这样的实时检测是如何”看一眼“进行检测的, 即让各个卷积特征图(通道)蕴含检测位置分类置信度的信息(即下图的Multiway Classification和Box Regression):

对于卷积的本质, David 9需要总结下面两点:

1. 单纯的卷积不会造成信息损失. 只是经过了层层卷积, 计算机看到了“更深”的图片, 输入图片被编码到最后一层的输出特征图(通道) 

2. 较大的卷积窗口可以卷积得到的输出特征图能够看到较大的物体, 反之只能看到较小的图片. 想象用1*1的最小卷积窗口, 最后卷积的图片粒度和输入图片粒度一模一样. 但是如果用图片长*宽 的卷积窗口, 只能编码出一个大粒度的输出特征. 即, 输出特征图越小, 把原始图片压缩成的粒度就越大.  继续阅读机器视觉 目标检测补习贴之SSD实时检测, Multibox Single Shot Detector

机器视觉 目标检测补习贴之YOLO实时检测, You only look once

机器视觉是一场科学家与像素之间的游戏 — David 9

上一期,我们已经介绍了R-CNN系列目标检测方法(R-CNN, Fast R-CNN, Faster R-CNN)。事实上,R-CNN系列算法看图片做目标检测,都是需要“看两眼”的. 即,第一眼 做 “region proposals”获得所有候选目标框,第二眼 对所有候选框做“Box Classifier候选框分类”才能完成目标检测:

事实上“第一眼”是挺费时间的,可否看一眼就能得到最后的目标检测结果?达到实时检测的可能? 答案是肯定的,这也是我们要讲YOLO的由来 — You only look once !

YOLO能够做到在输出中同时包含图片bounding box(检测框)的分类信息位置信息:  继续阅读机器视觉 目标检测补习贴之YOLO实时检测, You only look once