DeepMind新型神经网络:可异步训练的深度网络!— “解耦神经网络” 与 “合成梯度”

如果深度学习不是神经网络的终点, 那么神经网络会跟随人类进化多久? — David 9

自3年前Google收购DeepMind,这家来自英国伦敦的人工智能公司就一直站在神经网络与深度学习创新的风口浪尖(AlphaGoDeepMind Health)。

今天要介绍的“解耦神经网络接口”(Decoupled Neural Interfaces)的异步网络就是出自DeepMind之手。这篇2016发表的论文试图打破传统的前向传播和后向传播按部就班的训练过程。在传统神经网络, 整个过程是非异步的更新,更新也是逐层紧耦合的(图b):

截自:https://arxiv.org/pdf/1608.05343.pdf
截自论文“Decoupled Neural Interfaces using Synthetic Gradients“:https://arxiv.org/pdf/1608.05343.pdf

图(b)是传统普通前馈反馈神经网络(黑色是前馈箭头绿色是反馈箭头),f层到fi+1 层的权重矩阵由fi+1层的偏导反馈δ更新, 众所周知,反馈δi 必须等到后向反馈从输出层传递到fi+1 层后才能计算出。

为了试图解除这种“锁”(强耦合)(图(c)(d)),在(c)图中我们注意到在f层和fi+1 层之间,引入了模型Mi+1(图中菱形),又称人工“合成梯度”模型,用来模拟当前需要的梯度反馈更新。 继续阅读DeepMind新型神经网络:可异步训练的深度网络!— “解耦神经网络” 与 “合成梯度”

keras 手把手入门#1-MNIST手写数字识别 深度学习实战闪电入门

人们已经教会计算机自动找出那些重要的特征和属性, 那么下一步我们改教会计算机什么? — David 9

用深度学习框架跑过实际问题的朋友一定有这样的感觉: 太神奇了, 它竟然能自己学习重要的特征 ! 下一步我们改教会计算机什么?莫非是教会他们寻找新的未知特征

对于卷积神经网络cnn, 其中每个卷积核就是一个cnn习得的特征, 详见David 9之前的关于cnn博客

今天我们的主角是keras,其简洁性和易用性简直出乎David 9我的预期。大家都知道keras是在TensorFlow上又包装了一层,向简洁易用的深度学习又迈出了坚实的一步。

所以,今天就来带大家写keras中的Hello World , 做一个手写数字识别的cnn。回顾cnn架构:

我们要处理的是这样的灰度像素图: 继续阅读keras 手把手入门#1-MNIST手写数字识别 深度学习实战闪电入门

#15 增强学习101 闪电入门 reinforcement-learning

是先用自己的”套路”边试边学, 还是把所有情况都考虑之后再总结, 这是一个问题 — David 9

David 9 本人并不提倡用外部视角或者”黑箱”来看待”智能”和”机器学习”.

正如《西部世界》迷宫的中心是自己的内心. 神经网络发展到目前的深度学习, 正是因为内部的结构发生了变化(自编码器, 受限玻尔兹曼机, 改进的激活函数, 等等…) . 所以David 9 相信神经网络未来的发展在于人类对内部结构的新认知, 一定有更美的内部结构存在 !

而今天所说的增强学习, 未来更可能作为辅助外围框架, 而不是”智能核心”存在. 不过作为闪电入门, 我们有必要学习这一流行理论:

来自: http://www.cis.upenn.edu/~cis519/fall2015/lectures/14_ReinforcementLearning.pdf

没错, 这张图和文章特色图片是一个思想:

训练实体(Agent)不断地采取行动(action), 之后转到下一个状态(State), 并且获得一个回报(reward), 从而进一步更新训练实体Agent. 继续阅读#15 增强学习101 闪电入门 reinforcement-learning