聊聊目标检测中的多尺度检测(Multi-Scale),从YOLO,ssd到FPN,SNIPER,SSD填坑贴和极大极小目标识别

狙击手在放大倍焦前已经经历了大量的小目标训练,这样看似乎是RPN做的好 — David 9

之前在讲SSD时我们聊过SSD的目标检测是如何提高多尺度(较大或较小)物体检测率的。我们来回顾一下,首先,较大的卷积窗口可以卷积后看到较大的物体, 反之只能看到较小的图片. 想象用1*1的最小卷积窗口, 最后卷积的图片粒度和输入图片粒度一模一样. 但是如果用图片长*宽 的卷积窗口, 只能编码出一个大粒度的输出特征.

对于yolov1,每层使用同样大小的卷积窗口, 识别超大物体或者超小物体就变得无能为力(最后一层的输出特征图是固定7*7):

YOLO架构示意图

SSD就更进一步,最后一层的检测是由之前多个尺度(Multi-Scale)的特征图共同生成的:

SSD架构示意图

这样SSD在计算复杂度允许的情况下,在多尺度物体的检测上有所提高。但是SSD也有明显缺陷,其最后几层的所谓“多尺度”是有限的(如上图特征图尺寸越小,可以识别的物体越大)。对于极小的目标识别,SSD就显得无能为力了继续阅读聊聊目标检测中的多尺度检测(Multi-Scale),从YOLO,ssd到FPN,SNIPER,SSD填坑贴和极大极小目标识别

吴恩达新书《Machine Learning Yearning》读后感,验证(测试)集怎么选?如何高效分析性能?降低可避免偏差和方差?实操经验总结

如果你要选验证集或测试集,就选那些你预料未来数据的样子(Choose dev and test sets to reflect data you expect to get in the future and want to do well on)— 吴恩达

前不久吴恩达新书“机器学习念想”(Machine Learning Yearning)手稿完工(不知道这样翻译会不会被打。。)David 9 忍不住拜读 ,把读后感总结如下,欢迎指正和交流:

纵观全书分三部分:

  1. 怎么构建验证集和测试集?
  2. 如何构建有效的性能和错误分析机制 ?如何优化模型?
  3. 端到端模型的一些讨论

事实上,上手深度学习(机器学习)项目最先要做的和模型本身关系不大,而是构思性能验证系统和错误分析的有效机制。

艺术品最华丽的可能是最后的润色,但其构思、规划以及推敲往往占据大师平时更多心力

列奥纳多·达·芬奇《岩间圣母》草图(左), 和最后完整润色后画作(右)

同样,构建一个高效的深度学习系统,首先要有一个好的验证体系、推敲整理过的数据集、高效的错误分析机制,这样最后的润色(模型优化)才能水到渠成。

1. 谈谈验证(测试)集怎么选?

书中建议是,如果你要选验证集或测试集,就选那些你预料未来数据的样子。因此训练集样本分布不需要和验证集(测试集)相同。用白话说就是以你预料“现场”的样本分布为准。 继续阅读吴恩达新书《Machine Learning Yearning》读后感,验证(测试)集怎么选?如何高效分析性能?降低可避免偏差和方差?实操经验总结

谷歌大脑的“世界模型”(World Models)与基因学的一些思考,MDN-RNN与Evolution Strategies结合的初体验与源码

我们现在看到的智能算法都不是“可生长”的,遗传算法和ES只是强调了基因的“变异”,神经网络只是固定网络结构;而生物界的基因却可以指导蛋白质构成并且“生长”。— David 9

今年上半年谷歌大脑的“世界模型”(World Models)早已引起David 9的注意,今天终于有机会和大家叨叨。对于CarRacing-v0这个增强学习经典游戏:

来自:https://github.com/AdeelMufti/WorldModels

世界模型(World Models)与其他增强学习相比有一些明显优势:

来自:https://arxiv.org/abs/1803.10122

优势的来源David 9总结有两点:1. 模型拼接得足够巧妙,2. 抓住了一些“强视觉”游戏的“痛点”。 继续阅读谷歌大脑的“世界模型”(World Models)与基因学的一些思考,MDN-RNN与Evolution Strategies结合的初体验与源码

AutoKeras:开源AutoML初体验,自动搜索和构建最优深度模型,贝叶斯搜索器,以及mnist示例代码

20 美元/时的AutoML太贵?试试AutoKeras吧

自动搜索构建深度学习模型和调参一直是数据科学家们向往的工具,而我们知道Google AI发布的AutoML是要收费的,如果想要开源的而且想要对AutoML背后技术一探究竟的,可以看看这款AutoKeras

AutoKeras开发处于初期阶段,它基于Keras(也有pytorch),而keras我们知道是基于TensorFlow,所以GPU利用可以不用担心(只要你安装了gpu版TensorFlow即可)。由于Keras代码极其简洁,autokeras上手也较容易 。

所以直接上autokeras版mnist训练代码:

from keras.datasets import mnist
from autokeras.image_classifier import ImageClassifier

if __name__ == '__main__':
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape + (1,))
    x_test = x_test.reshape(x_test.shape + (1,))

    clf = ImageClassifier(verbose=True, augment=False)
    clf.fit(x_train, y_train, time_limit=12 * 60 * 60)
    clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
    y = clf.evaluate(x_test, y_test)
    print(y * 100)

这里有几个要点,第一,代码需要在python3.6上跑否则会有兼容性问题(目前autokeras只支持python3.6), 继续阅读AutoKeras:开源AutoML初体验,自动搜索和构建最优深度模型,贝叶斯搜索器,以及mnist示例代码

GAN和VAE都out了?理解基于流的生成模型(flow-based): Glow,RealNVP和NICE,David 9的挖坑贴

生成模型一直以来让人沉醉,不仅因为支持许多有意思的应用落地,而且模型超预期的创造力总是让许多学者和厂商得以“秀肌肉”:

OpenAI Glow模型生成样本样例,在隐空间控制图像渐变

了解基于流的生成模型(flow-based)前,先回顾目前主流的两类生成模型GAN和VAE,David 9文章早已介绍过

VAE与GAN结构比较

GAN简单粗暴,用两个深度网络(判别器D和生成器G)交替学习使得生成器G可以模拟现实生成样本,但是缺陷也是明显的:GAN不能直接了当地给出一个样本的隐分布的表征(你可以生成一个明星,但是你无法马上生成一个“微笑的”或“年轻的”明星),即,你很难用隐变量随意操纵生成的样本,你只知道生成的是任意样本(除非你重新设计GAN,像我们以前谈到的cGAN或者FaderNetworks等等。。)

VAE思路就完全不同,它继承了古老的贝叶斯理论,相信一切的创造可以用抽样后验概率来缔造。

你想创造新样本?好的,但是真实分布空间X 太复杂了,我们先意淫一个后验空间Z吧: 继续阅读GAN和VAE都out了?理解基于流的生成模型(flow-based): Glow,RealNVP和NICE,David 9的挖坑贴

从SRU小小的学术争议,可以学到什么?关于SRU简单循环单元,David 9 有几点想说

人类只是不择手段存活的预设算法,他们以为设计精密就能发号施令,但他们只是“乘客” — 《西部世界》

前不久SRU(简单循环单元)遭到了Quasi-RNN 的质疑,认为SRU只是Quasi-RNN的卷积窗口为1时的特殊情况,原帖在这里(需要梯子):

www.facebook.com/cho.k.hyun/posts/10208564563785149

SRU作者自己的解释在这里(不要梯子):

https://www.zhihu.com/question/65244705/answer/229364472

就争议本身David 9 不做任何评判,毕竟,一旦开始辩驳,人类就会不自觉地向着自己的利益方向靠近, 正如《西部世界》里所说:“人类只是不择手段存活的预设算法 ”

David 9 不喜欢八卦

所以,从这起小小的学术争议,David 9关注的是,我们可以学到什么 ?这里记录一下我的总结:

1. 论文起名要简洁,意图要清晰。

为什么之前Quasi-RNN没有火一把,而SRU却在社交网络上传了那么远?许多人忽略的一点是,SRU起名很好很简洁。如果作者起名叫“Yet another simple RNN acceleration method” ,恐怕就没人凑热闹了。SRU还能让人联想到GRU,会不会是下一代GRU呢?一些不明真相的网友就蠢蠢欲动了。

所以,写文章前,有必要想个好名字,让大家快速了解你的工作,为你传播。(不要刻意营销就好)

2. 论文要和相似idea的文章做充分对比,提前指出自己工作中非常不同的那一部分。 继续阅读从SRU小小的学术争议,可以学到什么?关于SRU简单循环单元,David 9 有几点想说

高阶Numpy扩展库与API盘点:在ndarray上直接进行多核分布式、GPU利用、稀疏处理和自动求导,那些你不知道的ndarray扩展操作

软件演进和生物进化一样,没人可以预测下一步走向哪里,我们只知道,它需要人类的脑力和贪婪去喂养 — David 9

谁也没有想到30年前Guido写的Python因为通俗易用、丰富的联网支持,变为现在数据科学家最喜爱的工具语言之一。甚至小小的代数计算库Numpy会涌现如此多的扩展库和矛盾。

有人认为,长颈鹿之所以进化时如此过度关注脖子长度(其实适当高度就足够了),只是因为母长颈鹿认为雄长颈鹿脖子越长越有性魅力(种内竞争)

软件进化也类似,人类社区中那些勤劳的开发者努力让Numpy支持各种场景(多核分布式、GPU利用、稀疏处理和Autograd ),解决各种矛盾(ndarray不兼容,numpy插件系统不到位)。但是,他们的汗水都是基于Python这个“种族”进化的,种内竞争激烈不一定能保证软件的发展方向好 。。。

扯远了。。今天还是想盘点高阶Numpy扩展库与API ,毕竟许多人不满足于基础的numpy代数计算。比如下面这些场景(重写库)

  • CuPy: 实现Numpy有的API ,保证所有计算可以在CUDA GPU上加速
  • Sparse: 对于稀疏的ndarray(许多元素是0的情况), 重写实现Numpy的API(更高效)
  • Dask array: 对于多核或者多机器的工作站,为了可以分布式或者多核,又重写Numpy API ,所以有了这个库

最简单的例子大概是这样的:

import numpy as np
x = np.random.random((2,3))  # 在一个cpu上跑 
y = x.T.dot(np.log(x) + 1)
z = y - y.mean(axis=0)
print(z[:5])

import cupy as cp
x = cp.random.random((2,3))  # 在GPU上跑
y = x.T.dot(cp.log(x) + 1)
z = y - y.mean()
print(z[:5].get())

import dask.array as da
x = da.random.random((2,3))  # 在许多cpu上跑
y = x.T.dot(da.log(x) + 1)
z = y - y.mean(axis=0)
print(z[:5].compute())

默默妈卖批,这帮人就不知道合作一下合成一个库吗? 继续阅读高阶Numpy扩展库与API盘点:在ndarray上直接进行多核分布式、GPU利用、稀疏处理和自动求导,那些你不知道的ndarray扩展操作