
Articles
https://doi.org/10.1038/s43588-021-00132-w

1Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA. 2Department of Bioinformatics, University of Texas 
Southwestern Medical Center, Dallas, TX, USA. 3Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA. 4Center for 
Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA. ✉e-mail: milo.lin@utsouthwestern.edu

Cognitive theories can be implemented in and tested by arti-
ficial intelligence (AI) systems. Models inspired by psychol-
ogy are called ‘symbolic’ because they explicitly encode our 

experiences of such cognitive processes as reasoning, perception 
and language. However, symbolic AI ignores the neural basis of 
cognition and is limited to specialized or simple tasks because of 
its need for manual feature curation1–3. On the other hand, ‘con-
nectionist’ models simulate the activity of interconnected neurons, 
treating cognitive processes as emergent phenomena arising from 
firing patterns distributed across a neural network4. Connectionist 
AI is exemplified by deep learning approaches, which have recently 
demonstrated superhuman accuracy across a large range of tasks, 
utilizing artificial neural networks composed of layers of neurons 
loosely inspired by biology and trained by backpropagation and sto-
chastic gradient descent1,3,5,6.

Despite their successes, current deep neural networks face fun-
damental limitations that restrict their usage and suggest they do 
not accurately reflect the neural basis of cognition. They are widely 
regarded as black boxes because, currently, there is no mechanis-
tic or quantitative explanation for how the distributed activities of 
individual neurons give rise to network outputs or cognitive experi-
ences, especially in the deeper layers responsible for mapping fea-
tures to outputs7–11. Deep learning models fail to replicate symbolic 
manipulation and other fundamental cognitive processes such as 
high-level reasoning and deliberation. For example, deep learn-
ing cannot generalize out-of-distribution, instead requiring large 
labeled datasets that must contain samples from the same distribu-
tion as the target task3,9,12,13. Deep neural networks, furthermore, are 
infamously fooled by small, human-imperceptible input perturba-
tions called adversarial attacks, emphasizing that they process infor-
mation differently than the brain8,9.

Although artificial neurons were originally inspired by biological 
neurons14 and convolutional layers were inspired by visual process-
ing in the retina and visual cortex3, many characteristic population-
level properties of the brain are not typically found in deep neural 

networks. They lack, especially in deeper dense layers, both the 
modular connectivity15,16 and the sparse, localist firing specific for 
certain stimuli17–21 found in the brain. It has also proven difficult to 
understand and mimic the rapid, local neuroplastic changes in the 
brain responsible for dynamic cognitive processes22,23.

To understand the neural basis of cognition and pursue artifi-
cial general intelligence, it is necessary to bridge the divide between 
symbolism and connectionism. Progress has been limited, despite 
substantial efforts to develop theory, improve and expand archi-
tectures, optimize training, and mix and match problem-specific 
techniques3,7,9. Some speculate that connectionist AI could simulate 
symbolic reasoning only by accounting for more complexities of 
neurobiology, such as biochemistry, spike trains, massive networks 
and neuroplasticity24.

In this Article, we develop a simple yet scalable neurocognitive 
model of neural information processing in which each neuron is 
a specialized decision-making agent within a hierarchical network. 
To demonstrate that this model is sufficient to encode complex cog-
nitive capabilities, we implemented it in a general-purpose machine 
learning algorithm for classification tasks that builds deep neural 
networks that are explainable, capable of symbolic manipulation, 
and better reflect neurobiological properties of the brain. These 
networks perform well on standard AI benchmarks and surpass 
existing deep neural networks on tasks involving reasoning and out-
of-distribution generalization.

Results
Directly encoding cognitive operations in neural networks. 
Because a given neuron will fire for certain stimuli and not others, 
its activity represents a distinction between these two sets of pos-
sible inputs. We will focus on neural distinctions as minimally suf-
ficient for cognition, abstracting away the details of biochemistry, 
neural dynamics and plasticity. In our model, each neuron makes 
one of two types of distinction: absolute or relative. A ‘concept 
neuron’ makes an absolute distinction between a specific subset of 

Explainable neural networks that simulate 
reasoning
Paul J. Blazek   1,2,3 and Milo M. Lin   1,2,3,4 ✉

The success of deep neural networks suggests that cognition may emerge from indecipherable patterns of distributed neu-
ral activity. Yet these networks are pattern-matching black boxes that cannot simulate higher cognitive functions and lack 
numerous neurobiological features. Accordingly, they are currently insufficient computational models for understanding neural 
information processing. Here, we show how neural circuits can directly encode cognitive processes via simple neurobiological 
principles. To illustrate, we implemented this model in a non-gradient-based machine learning algorithm to train deep neural 
networks called essence neural networks (ENNs). Neural information processing in ENNs is intrinsically explainable, even on 
benchmark computer vision tasks. ENNs can also simulate higher cognitive functions such as deliberation, symbolic reasoning 
and out-of-distribution generalization. ENNs display network properties associated with the brain, such as modularity, distrib-
uted and localist firing, and adversarial robustness. ENNs establish a broad computational framework to decipher the neural 
basis of cognition and pursue artificial general intelligence.

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci 607

mailto:milo.lin@utsouthwestern.edu
http://orcid.org/0000-0001-5962-6444
http://orcid.org/0000-0001-8680-2685
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-021-00132-w&domain=pdf
http://www.nature.com/natcomputsci


Articles NATurE CompuTATionAl SciEncE

similar stimuli (that is, a concept) and all other possible stimuli (for 
example, ‘like B’ versus ‘not like B’ in Fig. 1a). A ‘differentia neuron’ 
instead makes a relative distinction between stimuli from two dif-
ferent concepts (for example, the dotted line separating ‘more like A’ 
versus ‘more like B’ in Fig. 1a). Note that this A-versus-B differentia 
neuron still outputs whether other stimuli (such as from C or D) 
are more A-like or B-like. In the brain, these specialized distinc-
tions could, in principle, be performed redundantly by populations 
of neurons, for example to provide robustness.

Often, a concept may be impossible to absolutely distinguish 
with a single neuron (for example, in Fig. 1a, B would not be linearly 
distinguishable), so it must use the outputs of multiple upstream 
differentia neurons to distinguish it. Furthermore, concept neu-
rons may also receive inputs from related concept neurons, allow-
ing them to integrate the hierarchical structure of concepts. This is 
especially important for complex, non-convex concepts (for exam-
ple, words that have multiple definitions) that require division into 
subconcepts25.

These two connectivity principles can be summarized as (1) neu-
rons make either relative or absolute distinctions between concepts 
and (2) networks integrate related distinctions hierarchically. These 
principles set our neurocognitive model apart from existing con-
nectionist models such as deep neural networks, where neurons do 
not make interpretable distinctions and information is entangled 
across neural populations.

This model is consistent with theories from cognitive psychology 
and philosophy. Differentia and concept neurons are defined by the 
decision boundaries they make relative to inputs26, while the ability 
to recognize specific subconcepts is consistent with prototype and 
exemplar theories26,27 as well as localist models17–19. Furthermore, 
philosophy of mind has long described cognitive processes like rea-
soning and perception as series of distinctions28–32. For example, in 
the frameworks of Aristotle and Thomas Aquinas, a thing’s ‘essence’ 
is its definition, which first identifies its superordinate genus and 

then distinguishes it within the genus using qualities called ‘differ-
entiae’30,33–36. As reasoning is an iterative process of making judg-
ments (that is, distinctions) to arrive at conclusions31,37–39, neural 
systems that incorporate our proposed principles are implementing 
a form of reasoning.

Constructing artificial neural networks that reason. To test 
whether this model is sufficient to simulate reasoning in neural 
systems, we used it to construct artificial neural networks that we 
call essence neural networks (ENNs). Because an artificial neuron’s 
output is the weighted sum of its inputs passed through a nonlinear 
activation function, it makes a hyperplanar distinction40. This is use-
ful, because hyperplanes can separate disjoint convex regions, which 
conceptual space theory identifies as simple, natural concepts2,41.

Our principles permit considerable freedom in ENN archi-
tectural design and learning algorithm. Figure 1b shows different 
classes of simple, layered ENN architectures. Basic ENNs (Fig. 1c) 
(1) receive inputs, (2) pass them to all of the differentiae, (3) deter-
mine similarity to subconcepts and then (4) choose an optimal out-
put concept. Appropriate neural connectivity can also be directly 
inferred from the structure of conceptual space (Fig. 1d). Differentia 
neurons form the initial distinctions, and downstream subconcept 
neurons form subregions bounded by differentia hyperplane distinc-
tions. Concept neurons form the final regions by unifying upstream 
subconcept subregions (note that fuzzy distinctions produce curved 
decision boundaries). We will show that basic ENNs can solve a 
wide range of machine learning tasks, as well as describe more com-
plex architectures that increase the scope and performance of ENNs.

We developed a machine learning algorithm that trains ENNs for 
arbitrary classification problems (Methods). For basic ENNs, it first 
takes training samples from each concept (that is, each target label) 
and divides them into subconcepts. Differentia neurons are gener-
ated by computing linear support-vector machines (SVMs) between 
each pair of subconcepts. Subconcept neurons are generated using 

Differentiae
(relative distinctions)

DB

CA

Feature 1 Feature 1Feature 1
F

ea
tu

re
 2

Differentia neurons Subconcept neurons Concept neurons

c

Perceptron Minimal ENN Basic ENN

Convolutional ENN Consensus ENN

Hierarchical ENN Deliberative ENN

b

Input layer

Differentia layer

Subconcept layer

Concept layer

Convolutional filters

Deliberative neurons

Synapses

Neuromodulators

a

Smoothness vs

Concept
neurons

Subconcept
neurons

Differentia
neurons

Input
features

Fruit

Vegetable

Length

Color

Curvature

Size

vs

vs

vs

vs

Concept neurons
(absolute distinctions)

A

DB

CA

d

Fig. 1 | Connectivity principles of ENNs. a, Concept neurons absolutely distinguish a single concept (for example, B-like or not-B-like), while differentia 
neurons relatively distinguish pairs of concepts (for example, more A-like versus more B-like). b, The many ways to design ENN architectures. c, A detailed 
examination of the structure of a basic ENN showing how its architecture directly integrates reasoning processes (for example, recognizing culinary 
types of produce). Only apple-distinguishing differentia neurons are depicted here, and each differentia neuron connects to its corresponding subconcept 
neurons, which then connect to the corresponding concept neuron. d, The structure of conceptual space is learned directly by ENNs. Differentia neurons 
form hyperplane decision boundaries (lines) in conceptual space. They feed forward to subconcept neurons, each forming a subregion (colored areas) 
defined by differentia neuron boundaries. These feed into concept neurons, each forming a possibly disconnected conceptual region from its subconcepts.

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci608

http://www.nature.com/natcomputsci


ArticlesNATurE CompuTATionAl SciEncE

SVMs to separate each subconcept from the others using differentia 
neuron outputs as inputs. During this stage, less important differen-
tiae are pruned away. Finally, concept neurons are generated using 
SVMs to separate each concept from all the others using subconcept 
neuron outputs.

ENN training is fundamentally different from the current opti-
mization-based approach to deep learning, which instead mini-
mizes a loss function via backpropagation and stochastic gradient 
descent3,9,40. We trained ENNs and compared them to standard gra-
dient-descent-trained networks (GDNs) of the same size (Methods) 
on both perception-like tasks (for example, the MNIST (Modified 
National Institute of Standards and Technology) and CIFAR-10 
(Canadian Institute For Advanced Research) datasets) and sym-
bolic tasks (for example, MAX-SAT). Even without deliberate code 
optimization, ENN training times were practical and convenient 
(Table 1 and Supplementary Fig. 1), and ENN accuracy was compa-
rable to that of size-matched GDNs on benchmark perception tasks 
(Table 1 and Supplementary Fig. 1). Yet, the purpose of this work 
was not to improve performance on existing benchmarks, but rather 
to develop a general-purpose neural network model that can simu-
late symbolic cognition in an interpretable manner. Therefore, we 
show that ENNs differentiate themselves from GDNs by excelling in 
explainability, symbolic reasoning (Table 1) and robustness.

The explainable structure and function of ENNs. ENNs are inher-
ently explainable in function (each neuron makes a specific distinc-
tion) and structure (weights and biases are designed for optimal 

distinctions). To demonstrate explainability, we analyzed ENNs 
trained on the MNIST dataset of 70,000 images of handwritten dig-
its (Fig. 2a)5, a popular choice for assessing machine learning algo-
rithms. We also tested it on a synthetic dataset with horizontally or 
vertically oriented rectangles (Supplementary Fig. 3a and Methods). 
GDNs show minimal intelligible structure in the weights between 
image pixels and first-layer neurons (Fig. 2c and Supplementary Fig. 
3c), while ENN differentia neuron weights are easily interpretable 
because they are designed via linear SVMs. This can be appreci-
ated visually: differentiae positively weight pixels associated with 
a particular subconcept and negatively weight those of a different 
subconcept (Fig. 2b,c and Supplementary Fig. 3b,c).

Connections between deeper layers of neurons in GDNs are 
typically even less interpretable, with no sparsity15 or modular-
ity16. In ENNs, each subconcept neuron only requires inputs from 
its associated differentiae (such as in Fig. 1c). In general, they are 
free to be connected to all differentia neurons, yet we observed that 
subconcept neurons rely heavily on just these associated differen-
tiae (Fig. 2d,e and Supplementary Fig. 3d,e). To analyze modular-
ity, we split the positive and negative outgoing connections for each 
neuron between a separate excitatory and inhibitory neuron. Each 
split neuron was assigned to a group based on which output was 
most affected by the neuron’s firing (Methods). Individual ENN 
neuron firing had a much greater impact on the network output 
than did GDN neurons (Supplementary Fig. 4). Sorting each con-
nectivity matrix by group demonstrates the ENN’s modularity (Fig. 
2d,e), with a measurable difference between weights within-group 

Table 1 | Performance of the ENN compared to GDNs

Problem Training 
samples

Output 
classes

Input size Conv. Layers Layer 1  
size

Layer 2 
size

GDN 
time 
(min)

ENN 
time 
(min)

GDN accuracy ENN accuracy

Perception tasks:

Rectangles 50,000 2 28×28 — 201 56 2.6 7.5 99.98% 99.78%

MNIST 60,000 10 28×28 — 394 60 1.7 5.4 98.35% 97.27%

MNIST 60,000 10 28×28 6(5×5), 16(5×5) 127 84 6.1 12.4 98.70% 97.65%

MNIST 60,000 10 28×28 32(3×3), 64(3×3) 3167 84 12.7 16.0 98.93% 99.14%

CIFAR-10 50,000 10 28×28×3 60(3×3), 120(3×3) 3333 108 52.4 275 62.25% 64.78%

Symbolic reasoning tasks:

Logic gates 64 2 18 — 4 4 0.06 0.01 100% 100%

Orientation 56 2 28×28 — 784 56 0.20 0.05 Diagonals: 
63.3%
Outlines: 
70.7%
Dotted: 62.0%
Zigzags: 68.1%

Diagonals: 
100%
Outlines: 100%
Dotted: 100%
Zigzags: 100%

MAX-SAT 3,800 2 100×20 — 599 400 353 1.9 MAX-3SAT: 
3.61 less
MAX-SAT: 
4.49 less

MAX-3SAT:  
0.10 more
MAX-SAT:  
0.08 more

MAX-SAT 99,000 2 500×100 — 2999 2000 — 2316 — MAX-3SAT:  
1.34 more
MAX-SAT:  
1.35 more

TSP 90 10 55 — 405 90 1.15 0.075 2.04 longer 0.00 shorter

BDTs 20 10 1024 — 180 20 0.05 0.02 0.79 more 0.001 fewer

The results shown are the results of training an ENN and a GDN of the same size on several datasets (including 3 different network architectures for MNIST and 2 MAX-SAT datasets of different sizes). The 
following are shown for each problem: the number of training samples, number of output target classes, input dimensions, convolution filter number and size, number of neurons in each layer, GDN and 
ENN training times, and GDN and ENN accuracy on the test set. Accuracy on NP-hard problems is compared to standard greedy algorithms (Methods); units are clauses for MAX-SAT, map units for TSP 
(traveling salesman problem), tree depth for BDTs (binary decision trees).

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci 609

http://www.nature.com/natcomputsci


Articles NATurE CompuTATionAl SciEncE

versus between-group (Supplementary Fig. 4a,b). This is consistent 
with the brain’s modular architecture and axonal organization into 
neural tracts. By contrast, GDN connectivity is unstructured until 
the output layer, and even that is much less modular than ENNs 
(Supplementary Fig. 4a).

Furthermore, ENNs hierarchically separate distributed and 
localist firing patterns, with distributed firing in the differentia 
layer (Fig. 2f) and localist firing in subconcept and concept layers 
(Fig. 2g). GDN hidden layers display no localist firing. These results 
show that the biologically observed segregation of distributed and 

localist firing may be a signature of hierarchically segregated relative 
and absolute neural distinctions.

ENN reasoning analysis and flexible designs. Error analysis. 
Explainability of function permits explanation of both correct pre-
dictions (Supplementary Fig. 5) and errors, which is necessary for 
ethical and legal considerations and for preventing rare catastrophic 
failures. For example, sometimes we can identify differentia neu-
rons that are single-handedly responsible for producing an error on 
MNIST (Fig. 3a). These were used to identify features missing from 

O
ut

pu
t n

eu
ro

ns

Examples of weights between inputs and differentia neurons

2nd layer neurons Subconcept neurons

1st layer neurons Differentia neurons

GDN weights

a

c

d

f

g

b

Examples of weights between inputs and 1st layer neurons

0
1
2
3
4
5
6
7
8
9

0 1

8 76

2 34 5

9

e

GDN firing ENN firing

ENN weights

Inhibitory groups Excitatory groups Inhibitory groups Excitatory groups

1st layer neurons Differentia neurons

2nd layer neurons Subconcept neurons

Fig. 2 | The explainability of ENN neural structure and firing. a, Example MNIST training images. b, ENN learning first divides images within each output 
concept into subconcepts. Averages from representative subconcepts are shown, with lines connecting individual images to their subconcept. c, First-layer 
neurons, showing synaptic weights from each input pixel to the neuron (red are positive weights, blue are negative). The ENN neurons shown are those 
that distinguish the subconcept pairs in b. For comparison, the GDN neurons shown are those that maximally separate the same subconcept pairs. d,e, 
Matrices of synaptic weights between the first and second layers of neurons (d) and the second and third layers (e), split into inhibitory and excitatory 
neuron pairs and sorted into functional groups. f,g, The firing rates of first-layer (f) and second-layer (g) neurons on test images from each class (white is 
maximal firing, black is no firing).

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci610

http://www.nature.com/natcomputsci


ArticlesNATurE CompuTATionAl SciEncE

the image that could have prevented the error, as well as misleading 
features that caused the error (Fig. 3a). For other errors, the image 
optimally activated a correct subconcept neuron, but multiple erro-
neous subconcept neurons with lower outputs combined to out-
weigh the correct subconcept (Fig. 3b).

The inherent modularity of ENNs allows a network to be drasti-
cally pared down yet retain select concepts. When we progressively 
deleted subconcept neurons, the ENN lost accuracy for specific 
output classes one at a time, while GDNs demonstrated an unpre-
dictable, non-monotonic loss of function (Fig. 3c). The ENN’s 
sequential loss of specific functions is reminiscent of progressive 

neurological disorders with focal lesions, such as multiple sclerosis42 
and vascular dementia43.

ENN-based network architectures. Explainability of structure per-
mits flexibility in designing more sophisticated architectures (Fig. 
1b). For example, we have proposed one rudimentary way to train 
convolutional ENNs (Methods). Features are learned from subim-
ages, then locally connected subconcept neurons serve as convolu-
tional filters (Supplementary Fig. 2). At the end of the convolutional 
layers, a basic ENN is trained to produce the final output, yielding 
accuracy similar to size-matched convolutional GDNs (Table 1).

Actual: 1
ENN: 2

Actual: 5
ENN: 8

Actual: 9
ENN: 4

Label

Mistaken
differentia
neuron

Misleading
features

Differentia's
ideal
subconcept

Ideal
features
missing

a

0

1

0 0.5 1

A
ct

ua
l

P
ro

b(
co

rr
ec

t)

Manipulated output of differentia
A

ct
ua

l

0 0.5 1

A
ctual

0 0.5 1

b

0 10 20 30 40 50 60
0

50

100

A
cc

ur
ac

y 
(%

)

GDN

0 10 20 30 40 50 60

ENN

Number of deleted neurons

Network modularityc

Image

Actual: 4
ENN: 7ENN: 7

Actual: 3
ENN: 5

1.0

0

0.5

1.0

0

0.5

Top 3 subconcepts for each concept

S
ub

co
nc

ep
t n

eu
ro

n 
ou

tp
ut

Explainable failures: differentiae

Explainable failures: subconcepts

e Hierarchical ENNs

Total subconcept neurons (basic + hierarchical)

T
es

t e
rr

or
 (

%
)

S
ub

co
nc

ep
t l

ay
er

s

Total subc. neurons

Concept hierarchical tree

40 80 120 160 200

7.0

7.5

8.0

8.5

9.0

40 80 120 160 200
0

3

6

9

12

15
No. hierarchical
subconcepts
omitted:

No. hierarchical
subconcepts
omitted:

Basic
ENN

0

8

4

1
2
3

5
6
7

0
1
2
3
4
5
6
7
8

0

1.00

0.50

0.99

0.01

Consensus ENNsd

T
es

t e
rr

or
 (

%
)

Total subconcept neurons

40 80 120 160 200
7.0

7.5

8.0

8.5

9.0

subc. setOff the chartBasic ENN

pp
conceptSubconcept = c

...

Differentia's
mistaken
subconcept

Fig. 3 | Structural analysis and flexibility of ENNs. a, Examples of images mislabeled by the ENN for which a differentia neuron is single-handedly 
responsible for misclassification. Also shown are features missing from the image compared to the differentia’s ideal subconcept and the features that 
misled the ENN in making its mistake. b, Some mislabeled images had optimal firing on a correct subconcept neuron that was drowned out by several 
lesser-firing incorrect subconcept neurons. c, The GDN’s and ENN’s accuracies in classifying each of the 10 classes of digits, colored separately, as a 
simulated lesion grew by sequentially deleting subconcept neurons. d, The test error of consensus ENNs as the fraction of subconcept neurons coming 
from the second, unsupervised set is varied from 0 (that is, all basic ENN subconcepts, black) to 1 (that is, all unsupervised concepts, gray). e, Hierarchical 
ENNs can use the full concept hierarchical tree or omit a given number of parent nodes, leading to a different number of subconcept layers and different 
test errors.

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci 611

http://www.nature.com/natcomputsci


Articles NATurE CompuTATionAl SciEncE

An ENN can be designed to explicitly integrate multiple inde-
pendent perspectives to form a stronger consensus. A simple 
example of a consensus ENN has multiple overlapping sets of sub-
concepts learned independently of each other (Fig. 1b), which we 
implemented by learning a second subconcept set fully unsuper-
vised (Methods). For ENNs of fixed size, varying the ratio of the 
number of subconcepts from this second overlapping set improved 
the performance over basic ENNs (Fig. 3d). (These consensus ENNs 
were trained on 20 sets of only 1,000 random MNIST images to bet-
ter illustrate the improvement.)

ENNs can also have deeper subconcept layers that integrate 
the hierarchical organization of concepts (Fig. 1b and Methods). 
Because our basic ENNs learn subconcepts via hierarchical clus-
tering, each node of the concept hierarchical tree going to the root 
can be used to generate higher-level subconcept neurons (Fig. 3e). 
These hierarchical subconcept neurons were placed in deeper layers, 
receiving both direct and skip connections from differentia neurons 
and previous subconcept layers. Depending on how many of these 
hierarchical subconcepts were omitted (‘0 omitted’ meaning a full 
hierarchical ENN), we found that hierarchical ENNs had better per-
formance than basic ENNs, even when controlling for network size 
(again training on 20 sets of 1,000 MNIST images).

In addition to different neural architectures, ENN explainabil-
ity allows for dynamic changes to its learned parameters, similar 
to neuroplastic and neuromodulatory changes in biological neu-
rons. After the ENN was fully trained, we could optionally add a 
neuromodulatory feedback element that is active when no output 
probabilities exceed 50%, dynamically increasing or decreasing fir-
ing thresholds (that is, bias factors) of subconcept neurons (Fig. 
1b and Methods). This neuromodulation simulates the slow, delib-
erative reasoning of dual-process-theory’s system 2, in contrast 
to the rapid, intuitive reasoning of system 1 and standard deep 
neural networks44. Deliberative ENNs offered some improvement 
in classification accuracy, especially when training with less data 
(Supplementary Fig. 1b), and were necessary for some symbolic 
reasoning tasks.

These and other possible architectures may prove useful when 
applying ENNs to more complex problems in the future. For exam-
ple, we show that adding convolutional filters, deeper layers using 
hierarchical subconcepts, and a second set of consensus subcon-
cepts increased ENN performance compared to that of size-con-
trolled GDNs on the CIFAR-10 natural image dataset (Table 1)45,46. 
These initial results do not make use of the more advanced archi-
tectures and techniques necessary for GDNs to obtain state-of-the-
art performance (for example, data augmentation, regularization 
and model averaging), indicating ENNs have similar potential for 
improvement.

Learning algorithms that generalize across domains. ENNs are 
explainable because each neuron performs the symbolic task of 
computing similarity to opposing concepts. Symbolic representa-
tion is necessary for reasoning, and discrete symbols are particu-
larly useful and straightforward to analyze. We therefore tested 
whether ENNs are sufficient to simulate discrete symbolic reason-
ing by using neurons with outputs of only 0 or 1 (or 0.5 for ties), 
which is similar to spike-based neural coding47 but not possible 
for GDNs because there is no gradient. Symbolic reasoning is par-
ticularly important for learning rules from instructive examples 
and applying them to different but related problems. This has been 
called single domain generalization, in which a model trained on a 
single distribution of samples generalizes to unseen target distribu-
tions without additional training48. This has not been possible using 
standard deep learning without training on at least some data from 
the target distribution9,48–50. Going even further, we tested whether 
ENNs could generalize out-of-distribution from simple examples to 
complex tasks.

We trained a symbolic ENN and size-matched GDN to distin-
guish vertical and horizontal orientations of shapes in an image, 
using just 56 28 × 28 images containing only a full-length vertical 
or horizontal white stripe (Fig. 4a). The symbolic ENN is explain-
able, meaning we could readily translate its weights into equivalent 
pseudocode (Supplementary Text), suggesting symbolic ENNs 
could be used for automatic code generation. We assessed how well 
the networks generalized to several target test sets, including tens 
of thousands of diagonal line segments, rectangles, dotted lines 
and zigzag lines (Fig. 4b). Strikingly, unlike the GDN, the ENN 
performed perfectly on all of them (Fig. 4c). We tried optimizing 
GDNs by augmenting with convolutional filters and choosing net-
work architectures with the best test set performance, but still could 
not find GDNs that transferred well (Fig. 4c and Supplementary 
Fig. 6). To see how difficult it is for gradient descent to perform 
single domain generalization, we added random perturbations to 
the symbolic ENN weights and used these as the initial parameters 
for GDN training. Gradient descent could not train a network that 
generalized well once these weight perturbations exceeded 1–3% 
(Supplementary Fig. 7).

Generalizing from simple problems is the basis for design-
ing greedy algorithm heuristics such as for NP-hard problems, of 
which one of the best studied is the Boolean satisfiability (SAT) 
problem51. MAX-SAT is a classic generalization of SAT that asks 
for the maximum number of satisfiable clauses in a Boolean for-
mula in conjunctive normal form52. We developed training sets in 
which each formula has only one non-empty clause containing at 
most two literals (Fig. 4d and Methods), with the target network 
output being the ideal Boolean assignment for the next unassigned 
variable. We tested the trained networks on two target datasets 
with different numbers of non-empty clauses, one for MAX-3SAT, 
in which clauses have exactly three randomly chosen literals, and 
another for the more general MAX-SAT, with clauses of random 
lengths (Fig. 4e and Methods). Both the GDN and ENN were train-
able on the 10-variable, 100-clause training set, but we were unable 
to train GDNs on larger formulae in a reasonable time, probably due 
to the extreme non-overlapping sparsity of the training samples. On 
MAX-3SAT and MAX-SAT, only the ENN generalized well (Fig. 
4f). We were again able to translate the ENN weights into equiva-
lent pseudocode (Supplementary Text), which is similar to human-
designed algorithms. It is more complex than the pure greedy 
algorithm, which assigns TRUE to x1 when (x1) is more prevalent 
than (not x1) and vice versa for FALSE; instead the ENN is more 
similar to the MAX-SAT greedy algorithm with the best approxi-
mation ratio of 3/453. Surprisingly, the ENN performed better than 
both algorithms on random MAX-3SAT and MAX-SAT, a perfor-
mance difference that grew for ENNs trained and tested on progres-
sively larger formulae (Fig. 4f).

We also trained symbolic ENNs on two other NP-hard prob-
lems, the traveling salesman problem (TSP) and the optimal binary 
decision tree (BDT) problems51,54, which both required the delib-
erative architecture (Methods). Analysis of the ENNs and transla-
tion to pseudocode revealed that, on the TSP, the ENN discovered 
the nearest-neighbor greedy heuristic, while on the BDT problem, 
the ENN learned an algorithm with similar performance to the 
standard Classification and Regression Trees (CART) algorithm 
(Supplementary Fig. 8 and Supplementary Text). Together, these 
results demonstrate that symbolic ENNs can learn human-under-
standable algorithms from simple instances of a task that generalize 
out-of-distribution to complex instances.

Robustness of ENNs to input noise and adversarial attacks. 
Symbolic reasoning is more robust because it makes clear-cut dis-
tinctions. We tested this by tasking a GDN and a symbolic ENN to 
concurrently learn all 16 two-input Boolean functions (for example, 
AND, OR, NAND, XOR) by training on all 64 entries of the truth 

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci612

http://www.nature.com/natcomputsci


ArticlesNATurE CompuTATionAl SciEncE

table (Fig. 5a). ENN weights were easily interpreted and directly 
converted to a logic circuit (Fig. 5b). Although both the GDN and 
ENN achieved perfect training accuracy (Table 1), visualizing the 
decision boundaries showed that only the ENN made regular intui-
tive distinctions (Fig. 5c) when tasked to interpolate between train-
ing data on fuzzy inputs.

To measure the separation between inputs and decision bound-
aries on higher-dimensional problems, we took individual test set 
images and interpolated either toward an image of a different class 
or toward white noise. Along these trajectories we found the net-
work’s nearest decision boundary and measured the normalized 
L1 distance (that is, the average pixel difference) from the starting 
images. We found that both GDNs and ENNs similarly space deci-
sion boundaries between images (Fig. 5d and Supplementary Fig. 
9a). However, when interpolating between images and white noise, 
we observed ENN decision boundaries spaced at greater distances 
than those of GDNs, indicating more robust decision boundaries. 
This resulted in a greater tolerance to input noise by ENNs than 
GDNs (Fig. 5e and Supplementary Fig. 9b).

A robust decision boundary arrangement is particularly impor-
tant when defending against adversarial attacks. We generated 
adversarial images against GDNs and ENNs using the fast gradi-
ent sign method8 and measured the minimum perturbation (ϵmin
) needed for each image to fool its network. Because adversarial 

images transfer well between networks8, we also tested each net-
work on adversarial images designed against the other. Not only 
were ENNs several-fold more robust to self-adversarial images 
than were GDNs, but ENNs also were not easily fooled by adver-
sarial attacks designed against GDNs (Fig. 5f,g and Supplementary 
Fig. 9c,d). On MNIST, we found that adversarial images designed 
against the ENN surprisingly fooled the GDN more than the ENN. 
Furthermore, these differences in robustness were even greater 
for larger networks (Supplementary Fig. 9e–h). Interestingly, 
ENN adversarial perturbations also appeared more interpretable 
(Supplementary Fig. 10).

Discussion
Basic ENNs are most similar in design to Voronoi neural networks 
(VNNs)55, which use Voronoi tessellation to learn hyperplane sep-
arations between all individual training points and then combine 
them with AND and OR gates (thus implementing one-nearest-
neighbor classification). One key distinction is that ENNs learn 
aggregate concepts and subconcepts rather than memorizing the 
training set, allowing ENNs to scale to large, complex training sets 
without suffering from exponential scaling. While sharing similar 
goals with other hierarchical AI models of the cortex and of reason-
ing14,56, ENN training is automatic, flexible, scalable and useful for 
both perception and symbolic reasoning tasks.

a

c

Training set

Shape orientations

Horiz.

Vert.

Diagonals

Rectangles

Dotted lines

Zigzags

Transfer target sets

Horiz.

Vert.

Horiz.

Vert.

GDN

GDN (best architecture)

GDN (convolutional)

b

1 2 4 8 16 32

50

75

100

2 4 8 16 32

3 5 7 9 11 131 2 4 8 16 32

50

75

100

Rectangles

Dotted lines

Zigzags

T
ra

ns
fe

r 
ac

cu
ra

cy
 (

%
)

T
ra

ns
fe

r 
ac

cu
ra

cy
 (

%
)

d

f

e

Aspect ratio

Aspect ratio

Width

Spacing

Transfer target sets

MAX-3SATAA

Training set

Maximum Boolean satisfiability (MAX-SAT)AA

Optimal Assignment

MAX-SATAA

[ and [    ] and [    or    ] and [    or    or    ] and ...[    ]   or    or    or    or    or    ] [    or    or    ] [    or    ] 

[ and [    or    or    ] and ...[    or    or    ]and [    or    or    ] and   or    or    ] [    or    or    ] [    or    or    ] 

[ and [    ] and ...[    ] and [    or    or    or    ] and [    or    or    ] [    or    or    or    ]   or    ] 

[ and [    or    or    ] and ...[    or    or    ]and [    or    or    ] and   or    or    ] [    or    or    ] [    or    or    ] 

...
...

→ x1xx , not x1xx,→ x1xx , x2xx , ..., x50xx, , ..., → clause[    or    ]

and [ ] and [ ] and ...[ ] [ ] [    ] [ and [ ] and [ ] and ...[ ] [ ]   ] 

and [ ] and [ ] and ...[ ] [ ] [    or    ] and [ ] and [    ] and ...[ ] [ ] [    ] 

and [ ] and [    or    ] and ...[ ] [ ] [    or    ] and [    or    ] and [ ] and ...[ ] [ ] [    or    ] 
[ and [ ] and [ ] and ..[ ] [ ]   or    ] . and [    ] and [ ] and ...[ ] [ ] [    ] 

... ...

T F

T F/T

T/F F/T
T/F F

... ...

ENNENN

GDN

ENN 3/4-approx. alg.
Pure greedy alg.

Random

ENNs trained on (n variables) × (n m clauses)m

10 × 100
50 × 50040 × 400

30 × 30020 × 200

0.85

0.90

0.95

1.00

0 1 2 3 4 5 6 7 8 9 10

0

2

0.75

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4 5 6 7 8 9 10

0

3

S
at

. f
ra

ct
io

n

ENNs vs pure greedy alg. ENNs vs pure greedy alg.

Δ
 s

at
.

cl
au

se
s

Clause-to-variable ratio Clause-to-variable ratio

MAX-3SATAA MAX-SATAA

Fig. 4 | Transferring algorithms from simple to complex problems. a–c, Orientation problem results. a, The training set contains images with a perfectly 
horizontal or vertical image-spanning stripe. b, The transfer target sets include four types of shape whose target labels are determined by their length-
to-height ratio. c, Although the ENN generalized perfectly to the transfer sets, GDNs could not. Median accuracies at different difficulty levels are 
presented, with shading showing interdecile ranges. d–f, MAX-SAT results. d, Examples of formulae in the training set, displaying empty clauses except 
one containing x1 and sometimes another variable. Each is labeled as TRUE (T), FALSE (F) or both with a preference. e, The target sets had many clauses, 
with MAX-3SAT using three literals per clause and MAX-SAT having a variable amount. f, For formulae of maximum size 10 × 100, the expected value and 
interquartile range (shading) of the fraction of satisfiable clauses are shown for varying numbers of clauses, as determined by the ENN, GDN, random 
assignment, pure greedy or 3/4-approximation greedy heuristics. Shown beneath are the differences between ENNs of various sizes compared to the pure 
greedy algorithm.

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci 613

http://www.nature.com/natcomputsci


Articles NATurE CompuTATionAl SciEncE

Our model was developed to establish principles that are suffi-
cient (though not exclusive) to explain the neural basis of cognition. 
In doing so, ENNs naturally display emergent properties similar to 
the brain, such as sparse and modular connectivity, localist firing 
and short-term neuroplasticity. ENNs should also be well suited 
to model other neural phenomena. For example, efficient synaptic 
response to a dynamic environment requires the hierarchical struc-
ture and modularity seen in ENNs, as Hebbian learning increases 
connections between similarly firing neurons57. Additionally, 
recurrent connectivity allows higher-level distinctions to help 
refine, ignore or emphasize lower-level distinctions, analogous to 
how deliberative ENNs use recurrent reasoning. Finally, explain-
able neuron activity would seem to be necessary for introspective 
metacognition. In Supplementary Table 1, we further suggest how 
several well-studied neural circuits, and even non-neural biological 
networks, may relate to the ENN model.

We have kept the ENN structure and learning algorithm simple to 
demonstrate the power of our simple neurocognitive model to sim-
ulate various cognitive capabilities. This means there is substantial 
potential for improvement. As with gradient-based deep learning, 
applying ENNs to more complex tasks will require further method-
ological improvements, such as code optimization, increased net-
work size, improved convolutional filters and data augmentation. 
Gradient-based methods currently enjoy an advantage in flexibil-
ity for various training purposes (for example, latent variables in 
autoencoders, output neurons in generative networks, and end-to-
end training of combined models), which means GDNs will remain 

powerful tools until future ENN developments can close these gaps. 
However, ENN explainability and reasoning make possible funda-
mentally different types of capability, such as deliberation, discov-
ering human-understandable original algorithms, and generalizing 
out-of-distribution from small training sets. Other possibilities that 
ENNs should open include incorporating prior human knowledge, 
designing network architectures and hyperparameters rationally, 
and learning by definition. Taken together, this work demonstrates 
the basic principles sufficient for symbolic cognition in neural net-
works and how this can be simulated in AI systems to overcome 
current limitations and expand their capabilities.

Methods
General ENN training algorithm. Terminology. Each neuron n receives p inputs 
from other neurons x(n) and returns the output y(n) = f

(

w(n)
· x(n) + b(n)

)

, 
where w(n) are synaptic weights and b(n) is the bias factor. We used the sigmoid 
activation function f(x) =

1
1+e−x  for interneurons. For each neuron, the 

hyperplane w(n) ⋅ x(n) + b(n) = 0 represents its decision boundary. Its positive half-
space comprises the points 

{

x(n) ∈ R
p | w(n) · x(n) + b(n) > 0

}

 and its negative 

half-space 
{

x(n) ∈ R
p | w(n) · x(n) + b(n) < 0

}

.
Training sets contain N samples s1, ..., sN, each with target class c1, ..., cN, where 

ci is one of M possible classes, ci ∈ 1, ..., M. A ‘concept’ refers to a region of input 
space for which the neural network predicts a particular class, which must be 
learned from the set Ci of training samples {sk∣ck = i, k = 1, ..., N}. A ‘subconcept’ 
refers to a region in sample space learned from some set of training samples and 
is usually a subregion of a particular concept, learned from the set of training 
samples S(Ci)

j ⊆ Ci. In the description of the training algorithm below, the terms 

0 0.2 0.4 0.6 0.8 1.0

0

50

100

εε

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.2 0.4 0.6 0.8 1.0
0

40

60

80

100

20

1

820

d e

f g

a

c
A AND B

0 110

0

1

0

1

Noise level

T
es

t a
cc

ur
ac

y 
(%

)

GDN tolerance (εmin)GDN tolerance (εmin)

E
N

N
 to

le
ra

nc
e 

(ε
m

in
)

GDN adversarial

Avg. pixel difference from boundary

P
ro

ba
bi

lit
y 

de
ns

ity

Image (GDN)
Image (ENN)

Noise (ENN)

In
pu

t B

Input A
0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

10–3 10–3100 100
0

50

100

A
cc

ur
ac

yy

εε

ENN adversarial

G
D

N
E

N
N

Noise (GDN)

0 110

A OR B B A XOR Bf

Boolean logic gates MNIST handwritten digits

GDN
ENN

FFTT
FTFT

FFFF
TFFF
FTFF
TTFF
FFTF
TFTF
FTTF
TTTF
FFFT
TFFT
FTFT
TTFT
FFTT
TFTT
FTTT
TTTT

A
B

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

F

B
oo

le
an

 fu
nc

tio
n,

f

T  T  F  T

In
pu

ts

A
B

T

F

f % 16 < 8f

f % 4 < 2f

f % 8 < 4f

f % 2 < 1f

b

Fig. 5 | Decision boundary robustness to noise and adversarial attacks. a, The truth table for all 16 functions, with five examples of sample encodings. 
b, The ENN-derived logic circuit is possible because of ENN explainability. c, Visualized decision boundaries of four logic functions. A and B are inputs, 
and in grayscale is each networks' output probability for TRUE. Corner diamonds correspond to the training data, with TRUE in white and FALSE in black. 
d–g, The results for a GDN and ENN trained on MNIST, with results on the test set. d, The probability distributions of the average pixel difference between 
images and a decision boundary, found by interpolating toward either other test images or white noise (with the interdecile range shaded). e, The network 
classification accuracy as Gaussian noise is added to images (with the interdecile range shaded). f,g, Adversarial attacks were generated against both 
the GDN (f) and ENN (g) for all test images, with the minimum tolerated ϵmin scaling factors shown as two heatmaps (black diagonal identity line for 
reference). Inset: the classification accuracy at different ϵ values.

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci614

http://www.nature.com/natcomputsci


ArticlesNATurE CompuTATionAl SciEncE

concept and subconcept will be used to refer to either the input region or to the 
corresponding set C or S of training samples interchangeably, which will be clear in 
context. ‘(Sub)concept’ refers ambiguously to both subconcepts and concept.

Learning subconcepts. ENN construction can be an online-learning or a batch-
learning process, and there are several ways to learn subconcepts. In this Article, 
ENNs were trained with batch learning, and subconcepts were generally learned 
in an unsupervised manner via hierarchical clustering of the samples in each 
concept Ci (using the ward clustering metric). In general, the samples may be 
passed through some transformation g before clustering (that is, {g(s)∣s ∈ Ci}). As 
is standard, the hierarchical trees were cut at a particular level to yield mi terminal 
nodes, which represent clusters of training samples forming subconcepts S(Ci)

j , 
j = 1, ..., mi, where 

∪mi
j=1 S

(Ci)
j = Ci.

Learning differentia neuron parameters. Each differentia neuron δ is designed to 
distinguish between a pair of (sub)concepts 

(

S(Ci)
j , S(Ck)

l

)

. The differentia neuron 
receives inputs gδ(s). If these inputs come from the network’s original input layer, 
gδ(s) = s. In convolutional ENNs, gδ(s) are the outputs of the final convolutional 
layer. The differentia neuron’s parameters w(δ) and b(δ) are learned such that the 
points {gδ(s)|s ∈ S(Ci)

j } fall in the positive half-space and the other points 

{gδ(s)|s ∈ S(Ck)
l } fall in the negative half-space as best as possible. Linear SVMs 

were used to learn these parameters, although logistic regression, perceptrons or 
other algorithms could alternately be used. The parameters can be scaled by a given 
factor α (that is, w(δ) → αw(δ) and b(δ) → αb(δ)), to effectively change the steepness of 
the activation function.

Learning (sub)concept neuron parameters. Each (sub)concept neuron σ is designed 
similarly to differentia neurons, but, instead, they separate a given subconcept 
{gσ(s)|s ∈ S(Ci)

j } or concept {gσ(s)∣s ∈ Ci} from all complementary concepts 
{gσ(s)∣s ∉ Ci}. This means that, although differentia neurons make a one-versus-one 
distinction between two specific (sub)concepts, (sub)concept neurons make one-
versus-all distinctions for individual (sub)concepts (Fig. 1a).

Pruning differentia neurons. It is possible to prune away redundant or less useful 
differentia neurons from the network to maintain reasonable network sizes. 
Downstream (sub)concept neurons are trained, and the differentia neurons that 
they find unnecessary are pruned away. To determine which differentiae were not 
necessary, we tentatively trained the layer following the differentia layer. For each 
downstream neuron, the elements in w(n) with the lowest absolute values signify 
which differentiae the neuron found least necessary. The neuron was retrained 
without weights from these unnecessary differentia neurons. This continued 
iteratively until halting criteria were met, either when the hyperplane misclassified 
points at a given error rate or when the separation margin (computed in SVM 
training) decreased by a given percentage (both were hyperparameters). The 
differentia neurons found unnecessary by all downstream (sub)concept neurons 
are pruned, and the downstream neurons can then be trained again using only the 
remaining differentiae.

Basic ENN training algorithm. The training of the basic ENNs consisted of five 
steps: (1) learn subconcepts within each concept, (2) train differentiae between 
each pair of subconcepts, (3) prune unnecessary differentiae, (4) train subconcept 
neurons and (5) train concept neurons.

(1) Hierarchical clustering was performed on training samples from each 
concept separately. The resulting trees were all cut at the same value, which was 
determined such that there was a given number of total subconcepts (that is, 
∑M

i=1 mi), specified by a hyperparameter.
(2) Differentia neurons were designed for all pairs of unrelated subconcepts 

(S(Ci)
j , S(Ck)

l ) for i,k = 1, ..., M, i ≠ k, with j = 1, ..., mi, and l = 1, ..., mk.
(3) Differentia neurons were optionally pruned by tentatively training the 

subconcept layer neurons.
(4) Subconcept neurons were trained using outputs from the remaining 

differentia neurons, separating S(Ci)
j  from ⋃k ≠ iCk for all i = 1, ..., M and j = 1, ..., mi.

(5) Concept neurons were trained using outputs from the subconcept neurons. 
These neurons generally used the softmax activation function. Concept neuron 
weights were allowed to be improved with gradient descent, although generally 
the change was small and effectively just scaled all the concept neuron weights 
proportionally.

ENN hyperparameters. There are several hyperparameters used for training basic 
ENNs: the number of subconcepts; an SVM cost to set the softness of the margin; 
SVM scaling factors α for each layer; the differentia pruning halting conditions 
(maximum margin decrease and/or maximum misclassification tolerance). To find 
optimal hyperparameters, grid or random search was done using 10-fold cross-
validation. To speed up the search, we performed this on subsets of the training 
data. We often chose multiple final values for the number of subconcepts and for 
the maximum margin decrease so as to vary the size of the network, such that 

the network size would be generally comparable to previously published work5,58. 
For example, the hyperparameters of a basic ENN trained on MNIST (Table 1) 
comprised 60 subconcepts, SVM costs of 15 and 1,000 for the differentia and 
subconcept layers, SVM scaling factors of 8 for differentia and subconcept layers 
and 4 for the concept layer, and pruning halting conditions of 96% maximum 
margin decrease.

Other ENN architectures. Convolutional ENNs. Subimages from the training set 
were randomly sampled uniformly across locations in the images, equally from 
each class, and k-means clustering was used to learn ‘feature subconcepts’, with k 
corresponding to the number of convolutional filters (a hyperparameter). Each 
cluster was collapsed to its mean, and subconcept one-versus-all SVMs were 
computed for each convolutional filter. The outputs of the convolutional layer were 
passed through a max-pooling layer. These outputs were used to generate another 
set of convolutional filters and a max-pooling layer. The outputs of the second max-
pooling layer were then fed into the basic ENN training algorithm, using the final 
convolutional layer output as inputs. The hyperparameters in convolutional ENNs 
included the number and size of filters, stride rates, an SVM scaling factor and a 
max-pooling size.

The MNIST input images were padded out to be 32 × 32 pixels, consistent with 
LeNet-55. The smaller of the two convolutional ENNs in Table 1 was designed to be 
of similar dimensions to LeNet-5. Filters were visualized both by plotting weights 
and by computing the weighted average of all windows in the test set that lie on 
either side of the filter’s hyperplane (for a fair comparison between ENNs and 
GDNs). The weight applied to each window with filter output yi was ∣yi − 0.5∣.

Deliberative ENNs. In deliberative ENNs, deliberation occurs whenever the 
maximum output probability for a test sample is less than 0.5. The network 
uniformly modulates the bias of its subconcept neurons by adding or subtracting 
a small constant, stopping once some concept neuron’s output exceeds 0.5. Biases 
are positively modulated when no subconcept neurons fire above 0.5 and are 
negatively modulated otherwise.

Hierarchical ENNs. The hierarchical linkage tree for each concept found in 
step (1) of the basic ENN training algorithm is traversed backwards to include 
clusters represented by nodes at different levels in the tree. Within a concept, 
these subconcepts include the usual basic ENN subconcepts as well as additional 
subconcepts that are supersets of basic subconcepts. Each training sample is 
therefore assigned to multiple subconcepts at various depths in the hierarchical 
tree. All the basic ENN subconcept neurons were in a single layer after the 
differentia neurons, and then each additional subconcept found traversing the tree 
was represented by a subconcept neuron in subsequent layers. Deeper subconcept 
layers contained at most one subconcept neuron per concept. Each subconcept 
neuron received connections from all differentia neurons as well as all subconcept 
neurons from previous layers, giving rise to skip connections between non-
adjacent layers (equivalently, gσ(s) for each subconcept neuron σ contained the 
outputs from the differentia layer and previous subconcept layers). The output 
concept neurons only received input from subconcept neurons.

Consensus ENNs. We trained consensus ENNs by learning two sets of subconcepts. 
In addition to basic ENN subconcepts learned within concepts, we also performed 
hierarchical clustering on the full set of training samples unsupervised, cutting the 
linkage tree to form a given number of new subconcepts S′j . These new subconcepts 
could overlap multiple concepts, with 

∪

jS
′

j =
∪

iSi. Training otherwise proceeded 
as with basic ENNs.

Symbolic ENNs. The sigmoid activation function was replaced in basic ENNs with 
the Heaviside step function:

f(x) =















0 if x < 0

0.5 if x = 0

1 if x > 0

GDNs. Each GDN was trained using the same architecture as its comparison 
ENN. They were each trained using Keras with the Adam optimizer with default 
parameters and a categorical cross-entropy loss function. Tenfold cross-validation 
was used to find the optimal batch size and number of training epochs for all 
GDNs except the GDNs computed for Supplementary Fig. 1, which instead used 
fivefold cross-validation.

Datasets. Image datasets. The rectangles dataset was synthetically generated, 
similar to ref. 58. Each 28 × 28 black image had a white filled rectangle oriented 
horizontally or vertically. There were 50,000 training images and 10,000 test 
images.

The MNIST dataset consists of 60,000 training images and 10,000 test images, 
each of which is a 28 × 28 grayscale image with a single handwritten digit 0 
through 95. The CIFAR-10 dataset consists of 50,000 training images and 10,000 

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci 615

http://www.nature.com/natcomputsci


Articles NATurE CompuTATionAl SciEncE

test images, each of which is a 32 × 32-RGB image from one of 10 classes of 
animals or vehicles45.

For the orientation problem, the 56 training images were 28 × 28 black images 
with a one-pixel-wide stripe across the full length or height of the image. To 
generate the diagonal line and rectangle outline target sets, for every combination 
of possible heights and widths of non-square rectangles we made at most 50 images 
with random translations of the rectangle or one of its diagonals. The dotted line 
target set took the training images and turned them into dotted lines of varying 
intervals (spacing of 1–26 pixels). The zigzag dataset took two horizontally or 
vertically oriented endpoints and drew a zigzag between them with each line 
segment at 45° (for total zigzag widths 3–13).

Boolean logic problem. The full two-input truth table for all 16 Boolean functions, 
as displayed in Fig. 5a, was encoded into 64 individual samples. Each sample 
contained 18 features, the first two encoding the function inputs (as either 1 or −1) 
and the other 16 one-hot encoding the function index.

The logic circuit in Fig. 5b uses four pairs of switches controlled by the 
indicated inequality, where f is the index of the Boolean function. The plots in Fig. 
5c were generated by testing each network on a fixed function index for different 
interpolated function inputs.

MAX-SAT. Formulae in conjunctive normal form with m clauses and n possible 
variables were encoded in m × 2n matrices, with each row corresponding to a 
clause and each column corresponding to some variable xi or (not xi). Training 
samples were generated by choosing a single clause and including either (x1) or 
(not x1). Samples could also have one additional variable (xi) or (not xi). All such 
possible formulae were included in the training sets, for a total of m(4n − 2). The 
ideal x1 assignment was encoded in two values corresponding to TRUE and FALSE: 
(1, 0) for TRUE, (0, 1) for FALSE, (0.99, 0.01) for TRUE/FALSE and (0.01, 0.99) for 
FALSE/TRUE. The latter two were used to indicate the network should prefer one 
assignment over the other, but that the other was still possible.

To generate the two test sets, 5,000 unique formulae were generated, each 
with a random number of empty clauses. For MAX-3SAT, each clause contained 
three randomly chosen variables. For MAX-SAT, each variable was included with 
probability 3/n.

Each algorithm (ENN, GDN, random, pure greedy or 3/4-approximation) 
returns a probability of assigning TRUE or FALSE to x1. After randomly choosing 
based on this probability, all newly satisfied clauses were emptied. The variable 
indices were then shifted over one so that the algorithms could then choose an 
assignment for each subsequent variable. The results were averaged over 100 
trials because of the probabilistic assignments and because the 3/4-approximation 
algorithm’s guarantee is for the expected number of satisfied clauses. Accuracy is 
reported as the difference with respect to the pure greedy algorithm.

The TSP. Maps were unit squares containing 10 cities to be visited. The network 
inputs included the upper half of the inter-city distance matrix (45 values) and a 
one-hot encoding indicating the salesman’s current city. Already-visited cities were 
denoted as being a distance of 10 from all other cities. The training set consisted of 
90 maps, each with only one unvisited city, with the correct next city located a very 
short distance from the current city. The test set had 5,000 maps with 10 randomly 
located cities.

ENNs were deliberative and had each subconcept only connected to its 
associated differentiae, and the output neurons used the sigmoid activation 
function. After training, each network was asked to find a route for the test 
set maps. After the network picked a city to move to, the distance matrix was 
updated by setting all distances to and from the previous city to 10 and changing 
the one-hot encoding to the new city. The network outputs corresponding to 
cities already visited were masked to prevent the possibility of endless loops. The 
nearest-neighbor greedy algorithm (which chooses the closest unvisited city to 
visit next) served as a reference for network performance, with the reported test 
accuracy being the average difference in route lengths found by the network and 
the reference.

The BDT problem. The problem is to find a BDT that reproduces a given truth table 
with minimum tree depth, defined as the average depth necessary to classify each 
entry of the truth table. Samples came from 10-input truth tables that contained 
1,024 entries, with the label column serving as the network input (encoded as zeros 
and ones). The target output of the network is which of the 10 inputs to split at that 
node of the tree. The training set consisted of just 20 samples corresponding to 
the truth tables associated with all possible BDTs containing a single branch node. 
For the test set, we generated 5,000 random BDTs by allowing each node to branch 
with probability 0.7 and not allowing branches beyond depth 7, with the leaf labels 
assigned randomly. The truth tables of these BDTs formed the test set.

To build a BDT with a trained network, the network chose which input to 
split for the first branch node. Going down each of the branches in turn, if all 
entries on the branch were labeled the same, a leaf was placed at the end with the 
corresponding label. If more branch nodes were necessary, the truth table was 
temporarily reformed by taking the truth table half corresponding to its side of 
the split and copying onto the other half, such that the already-split features no 

longer needed to be split. This new truth table was put through the network again, 
masking the outputs of already chosen inputs to prevent infinite trees. This was 
done recursively until all branches terminated in leaves.

Each test sample was also given to the greedy CART algorithm with Gini 
impurity as the splitting criterion, using scikit-learn’s DecisionTreeClassifier. The 
test accuracy reported is the average difference in tree depth found by a neural 
network compared to the CART algorithm.

Performance metrics. Networks were trained and tested on a single central 
processing unit node on the BioHPC computing cluster at the University of Texas 
Southwestern Medical Center. Training times are the measured wall times, starting 
after loading the training data and ending after the network’s parameters were 
finalized. The reported accuracies come from the test sets, which were excluded 
from training and hyperparameter optimization.

Neuron functional groups. For modularity analysis and visualization, each 
neuron was duplicated and the outgoing weights w(n) became either min(0,w(n)

) 
or max(0,w(n)

). Each neuron’s output was artificially altered between 0 and 1 for 
5,000 test images, and we found the output neuron’s activity that changed most. For 
each connectivity matrix, we computed the Kolmogorov–Smirnov statistic between 
the within-group weight distribution (that is, weights between neurons assigned 
to the same group) and the between-group weight distribution (that is, weights 
between neurons assigned to different groups). To assess functional importance, 
we drove each neuron’s output between 1 and 100 and measured the maximum 
change in the output layer. Supplementary Fig. 4b plots the average response for 
each neuron.

Explaining errors. Each differentia neuron’s output was artificially varied to see 
if it could individually change the network output to be correct for a misclassified 
test image. The misleading features figures were generated by calculating 
((D ⊙ I)+ − (D ⊙ S)+)

+
, where I is the test image, D is the differentia weight 

set, S is the average of all training images from the correct subconcept, and 
(x)+ = max(x, 0). The missing features figures were generated by calculated 
(((−D) ⊙ S)+ − ((−D) ⊙ I)+)

+
. These assumed that the correct subconcept is 

in the differentia neuron’s positive half-space, otherwise the sign of D is reversed.

Translating symbolic ENNs to pseudocode. Symbolic ENN weights were 
examined and translated into pseudocode that performed the equivalent step-by-
step algorithm. This was done for each neuron, determining what its weights did in 
the space of its inputs. This, usually, was some form of threshold logic that we have 
written either as if-statements with inequality conditions, or sometimes as simple 
logic functions like OR and AND.

Choosing optimal GDN network sizes for generalization. For the orientation 
problem and the TSP, we trained GDNs of varying layer widths, performing a 
grid search by scaling from 0 to twice the width of each ENN layer. We trained 
ten GDNs for the orientation problem and five for the TSP. We then chose the 
architecture with the best average performance on the test sets as the best-
architecture GDN.

Seeding GDNs with ENN weights. To demonstrate the rarity of finding a 
generalizable solution with GDNs, we took the symbolic ENN, scaled its weights 
by 16 and changed the activation functions to sigmoids, then perturbed its weights 
by a small amount before training as a GDN. The perturbation consisted of adding 
a normally distributed value to all weights and biases, with the standard deviation 
being a given fraction of the mean weight magnitude for each layer separately.

Network lesions. Lesions were performed in the second hidden layer 
(subconcept neurons in ENNs). Neurons were deleted sequentially, and test 
accuracy was calculated individually for each class. The sequence of neuron 
deletions was determined by hierarchical linkage clustering on the neurons’ 
outputs on the test set, assuming that neurons with similar firing patterns are 
physically located more closely.

Distances to decision boundaries. For each sample in the test set correctly 
predicted by both the ENN and GDN—about 96% of MNIST and 99% of the 
rectangles test sets—20 target locations were chosen for interpolation. Each target 
was either a test image from a different class or white noise (that is, random black 
and white pixels) that the networks classified differently than the test image. 
Interpolating between the sample and the target, the point at which the network 
changed its predicted class was found and the average pixel difference was 
calculated (which is proportional to the L1 distance to the boundary).

Robustness analyses. To test robustness to noise, Gaussian noise with various 
standard deviations was added to test images, repeating 20 times for each noise 
level.

To generate adversarial images, we used the fast gradient sign method, 
where perturbations are given by ϵsign(∇xL), where x is the original image and 
L is the network’s loss function8. We increased the value of ϵ until the image 

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci616

http://www.nature.com/natcomputsci


ArticlesNATurE CompuTATionAl SciEncE

was misclassified (ϵmin). For both the GDN and ENN, we generated adversarial 
perturbations for each test image, where L for both was the cross-categorical 
entropy loss used to train the GDN. ϵmin was found separately for each network.

Data availability
The datasets used in this work are included with the code59. The MNIST and 
CIFAR-10 datasets are publicly available5,45. Source data are provided with this 
paper.

Code availability
The code used to build, train and analyze ENNs as well as the various training and 
test sets have been deposited in Code Ocean59.

Received: 22 December 2020; Accepted: 16 August 2021;  
Published online: 22 September 2021

References
	1.	 Minsky, M. Logical vs. analogical or symbolic vs. connectionist or neat vs. 

scruffy. AI Magazine 12, 34–51 (1991).
	2.	 Gardenfors, P. Conceptual spaces as a framework for knowledge 

representation. Mind Matter 2, 9–27 (2004).
	3.	 Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,  

436–444 (2015).
	4.	 McClelland, J. L. & Rogers, T. T. The parallel distributed processing approach 

to semantic cognition. Nat. Rev. Neurosci. 4, 310–322 (2003).
	5.	 Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied 

to document recognition. Proc. IEEE 86, 2278–2324 (1998).
	6.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with 

deep convolutional neural networks. In Proc. Advances in Neural Information 
Processing Systems 25 1097–1105 (NIPS, 2012).

	7.	 Shwartz-Ziv, R. & Tishby, N. Opening the black box of deep neural networks 
via information. Preprint at https://arxiv.org/pdf/1703.00810.pdf (2017).

	8.	 Szegedy, C. et al. Intriguing properties of neural networks. Preprint at  
https://arxiv.org/pdf/1312.6199.pdf (2013).

	9.	 Marcus, G. Deep learning: a critical appraisal. Preprint at https://arxiv.org/
pdf/1801.00631.pdf (2018).

	10.	Kindermans, P.-J. et al. in The (Un)reliability of Saliency Methods 267–280 
(Springer, 2019).

	11.	Olah, C. et al. The building blocks of interpretability. Distill 3, e10 (2018).
	12.	Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level  

concept learning through probabilistic program induction. Science 350, 
1332–1338 (2015).

	13.	Wang, M. & Deng, W. Deep visual domain adaptation: A survey. 
Neurocomputing 312, 135–153 (2018).

	14.	McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in 
nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).

	15.	Han, S., Pool, J., Tran, J. & Dally, W. Learning both weights and connections 
for efficient neural network. In Proc. Neural Information Processing Systems 28 
1135–1143 (NIPS, 2015)

	16.	Happel, B. L. & Murre, J. M. Design and evolution of modular neural 
network architectures. Neural Netw. 7, 985–1004 (1994).

	17.	Roy, A. A theory of the brain: localist representation is used widely in the 
brain. Front. Psychol. 3, 551 (2012).

	18.	Quiroga, R. Q. & Kreiman, G. Measuring sparseness in the brain: comment 
on Bowers (2009). Psychol. Rev. 117, 291–297 (2010).

	19.	Roy, A. A theory of the brain—the brain uses both distributed and localist 
(symbolic) representation. In Proc. 2011 International Joint Conference on 
Neural Networks 215–221 (2011).

	20.	Tolhurst, D. J., Smyth, D. & Thompson, I. D. The sparseness of neuronal 
responses in ferret primary visual cortex. J. Neurosci. 29, 2355–2370 (2009).

	21.	Yen, S.-C., Baker, J. & Gray, C. M. Heterogeneity in the responses of  
adjacent neurons to natural stimuli in cat striate cortex. J. Neurophysiol. 97, 
1326–1341 (2007).

	22.	Richards, B. A. & Lillicrap, T. P. Dendritic solutions to the credit assignment 
problem. Curr. Opin. Neurobiol. 54, 28–36 (2019).

	23.	Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T. & Lin, Z. Towards 
biologically plausible deep learning. Preprint at https://arxiv.org/
pdf/1502.04156.pdf (2016).

	24.	Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. & Maida, A. 
Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019).

	25.	Wittgenstein, L. Philosophical Investigations 3rd edn (Basil Blackwell, 1968).
	26.	Maddox, W. & Ashby, F. Comparing decision bound and exemplar models of 

categorization. Percept. Psychophys. 53, 49–70 (1993).
	27.	Ashby, F. & Maddox, W. Human category learning. Annu. Rev. Psychol. 56, 

149–178 (2005).
	28.	Aristotle. Book III. In De Anima (ed. Ross, W. D.) (Oxford: Clarendon  

Press, 1931).
	29.	Aquinas, T. Prima Pars. In Summa Theologiae. q78 (Ave Maria Press, 2000).

	30.	Aquinas, T. Question 1: Truth. In Quaestiones disputatae de Veritate (ed. 
Mulligan, R.) (Henry Regnery Company, 1952).

	31.	Hume, D. Book 1: Of the Understanding. In A Treatise of Human Nature (ed. 
Selby-Bigge, L.A.) (Oxford: Clarendon Press, 1896).

	32.	Kant, I. Introduction. In Critique of Pure Reason (eds. Guyer, P. & Wood, A.) 
(Cambridge Univ. Press, 1998).

	33.	Aristotle. Book VII. In Metaphysics (ed. Ross, W. D.) (Oxford: Clarendon 
Press, 1924).

	34.	Aristotle. Section I. In Categories (ed. Ross, W. D.) (Oxford: Clarendon  
Press, 1928).

	35.	Bonaventure. Chapter III. In Itinerarium Mentis in Deum (ed. Cousins E.) 
(Paulist Press, 1978).

	36.	Aquinas, T. De Ente et Essentia (ed. Bobik, J.) (University of Notre Dame 
Press, 1965).

	37.	Aristotle. Posterior Analytics (ed. Ross, W. D.) (Oxford: Clarendon  
Press, 1925).

	38.	Aquinas, T. Prima Pars. In Summa Theologiae. q79 (Ave Maria  
Press, 2000).

	39.	Hobhouse, L. T. The Theory of Knowledge: a Contribution to Some Problems of 
Logic and Metaphysics 3rd edn (Methuen & Co., 1921).

	40.	Gurney, K. in An Introduction to Neural Networks Ch. 3 (Taylor &  
Francis, 1997).

	41.	Bellmund, J. L. S., Gardenfors, P., Moser, E. I. & Doeller, C. F.  
Navigating cognition: spatial codes for human thinking. Science 362,  
eaat6766 (2018).

	42.	Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. 
Med. 378, 169–180 (2018).

	43.	Korczyn, A. D., Vakhapova, V. & Grinberg, L. T. Vascular dementia. J. Neurol. 
Sci. 322, 2–10 (2012).

	44.	Evans, J. S. B. T. Dual-processing accounts of reasoning, judgment and social 
cognition. Annu. Rev. Psychol. 59, 255–278 (2008).

	45.	Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images, 
Technical Report TR-2009 (Univ. Toronto, 2012).

	46.	Jha, D. et al. Lightlayers: parameter efficient dense and convolutional  
layers for image classification. In Parallel and Distributed Computing: 
Applications and Technologies (eds Zhang, Y., Xu, Y. & Tian, H.) 285–296 
(Springer, 2021).

	47.	Brette, R. Philosophy of the spike: rate-based vs. spike-based theories of the 
brain. Front. Syst. Neurosci. 9, 151 (2015).

	48.	Qiao, F., Zhao, L. & Peng, X. Learning to learn single domain generalization. 
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 
12553–12562 (IEEE Computer Society, 2020).

	49.	Arnold, A., Nallapati, R. & Cohen, W. W. A comparative study of  
methods for transductive transfer learning. In Proc. Seventh IEEE 
International Conference on Data Mining Workshops (ICDMW 2007)  
77–82 (IEEE, 2007).

	50.	Hu, S., Zhang, K., Chen, Z. & Chan, L. Domain generalization via 
multidomain discriminant analysis. In Proc. Machine Learning Research Vol. 
115 (eds Adams, R. & Gogate, V.) 292–302 (PMLR, 2020).

	51.	Karp, R. Reducibility among combinatorial problems. Complexity Comput. 
Comput. 40, 85–103 (1972).

	52.	Johnson, D. S. Approximation algorithms for combinatorial problems.  
J. Comput. Syst. Sci. 9, 256–278 (1974).

	53.	Poloczek, M., Schnitger, G., Williamson, D. & Zuylen, A. Greedy algorithms 
for the maximum satisfiability problem: simple algorithms and 
inapproximability bounds. SIAM J. Comput. 46, 1029–1061 (2017).

	54.	Hyafil, L. & Rivest, R. L. Constructing optimal binary decision trees is 
NP-complete. Inf. Process. Lett. 5, 15–17 (1976).

	55.	Bose, N. K. & Garga, A. K. Neural network design using Voronoi diagrams. 
IEEE Trans. Neural Netw. 4, 778–787 (1993).

	56.	Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in 
cortex. Nat. Neurosci. 2, 1019–1025 (1999).

	57.	Cooper, L. N. & Bear, M. F. The BCM theory of synapse modification  
at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13,  
798–810 (2012).

	58.	Bergstra, J. Random search for hyper-parameter optimization. J. Mach. Learn. 
Res. 13, 281–305 (2012).

	59.	Blazek, P. J. & Lin, M. M. Essence neural networks. CodeOcean https://doi.
org/10.24433/CO.7389497.v1 (2021).

Acknowledgements
We acknowledge the Cecil H. and Ida Green Foundation, the Welch Foundation (grant 
no. I-1958-20180324) and the anonymous-donor-supported UTSW High Risk/High 
Impact grant for funding this research.

Author contributions
P.J.B. and M.M.L. designed the research. P.J.B. performed the research, contributed new 
analytical tools and analyzed data. P.J.B. and M.M.L. wrote the manuscript.

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci 617

https://arxiv.org/pdf/1703.00810.pdf
https://arxiv.org/pdf/1312.6199.pdf
https://arxiv.org/pdf/1801.00631.pdf
https://arxiv.org/pdf/1801.00631.pdf
https://arxiv.org/pdf/1502.04156.pdf
https://arxiv.org/pdf/1502.04156.pdf
https://doi.org/10.24433/CO.7389497.v1
https://doi.org/10.24433/CO.7389497.v1
http://www.nature.com/natcomputsci


Articles NATurE CompuTATionAl SciEncE

Competing interests
The authors have filed an international patent related to this work (PCT/US2021/019470).

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s43588-021-00132-w.

Correspondence and requests for materials should be addressed to Milo M. Lin.

Peer review information Nature Computational Science thanks the anonymous reviewers 
for their contribution to the peer review of this work. Handling editor: Ananya Rastogi, 
in collaboration with the Nature Computational Science team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2021

Nature Computational Science | VOL 1 | September 2021 | 607–618 | www.nature.com/natcomputsci618

https://doi.org/10.1038/s43588-021-00132-w
http://www.nature.com/reprints
http://www.nature.com/natcomputsci

	Explainable neural networks that simulate reasoning

	Results

	Directly encoding cognitive operations in neural networks. 
	Constructing artificial neural networks that reason. 
	The explainable structure and function of ENNs. 
	ENN reasoning analysis and flexible designs. 
	Error analysis
	ENN-based network architectures

	Learning algorithms that generalize across domains. 
	Robustness of ENNs to input noise and adversarial attacks. 

	Discussion

	Methods

	General ENN training algorithm
	Terminology
	Learning subconcepts
	Learning differentia neuron parameters
	Learning (sub)concept neuron parameters
	Pruning differentia neurons

	Basic ENN training algorithm
	ENN hyperparameters
	Other ENN architectures
	Convolutional ENNs
	Deliberative ENNs
	Hierarchical ENNs
	Consensus ENNs
	Symbolic ENNs

	GDNs
	Datasets
	Image datasets
	Boolean logic problem
	MAX-SAT
	The TSP
	The BDT problem

	Performance metrics
	Neuron functional groups
	Explaining errors
	Translating symbolic ENNs to pseudocode
	Choosing optimal GDN network sizes for generalization
	Seeding GDNs with ENN weights
	Network lesions
	Distances to decision boundaries
	Robustness analyses

	Acknowledgements

	Fig. 1 Connectivity principles of ENNs.
	Fig. 2 The explainability of ENN neural structure and firing.
	Fig. 3 Structural analysis and flexibility of ENNs.
	Fig. 4 Transferring algorithms from simple to complex problems.
	Fig. 5 Decision boundary robustness to noise and adversarial attacks.
	Table 1 Performance of the ENN compared to GDNs.




