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Abstract— Deep learning is a branch of artificial intelligence
employing deep neural network architectures that has signifi-
cantly advanced the state-of-the-art in computer vision, speech
recognition, natural language processing and other domains. In
November 2015, Google released TensorFlow, an open source deep
learning software library for defining, training and deploying
machine learning models. In this paper, we review TensorFlow
and put it in context of modern deep learning concepts and
software. We discuss its basic computational paradigms and
distributed execution model, its programming interface as well
as accompanying visualization toolkits. We then compare Ten-
sorFlow to alternative libraries such as Theano, Torch or Caffe
on a qualitative as well as quantitative basis and finally comment
on observed use-cases of TensorFlow in academia and industry.

Index Terms— Artificial Intelligence, Machine Learning, Neu-
ral Networks, Distributed Computing, Open source software,
Software packages

I. INTRODUCTION

Modern artificial intelligence systems and machine learn-
ing algorithms have revolutionized approaches to scientific
and technological challenges in a variety of fields. We can
observe remarkable improvements in the quality of state-of-
the-art computer vision, natural language processing, speech
recognition and other techniques. Moreover, the benefits of
recent breakthroughs have trickled down to the individual,
improving everyday life in numerous ways. Personalized dig-
ital assistants, recommendations on e-commerce platforms,
financial fraud detection, customized web search results and
social network feeds as well as novel discoveries in genomics
have all been improved, if not enabled, by current machine
learning methods.

A particular branch of machine learning, deep learning,
has proven especially effective in recent years. Deep learning
is a family of representation learning algorithms employing
complex neural network architectures with a high number
of hidden layers, each composed of simple but non-linear
transformations to the input data. Given enough such trans-
formation modules, very complex functions may be modeled
to solve classification, regression, transcription and numerous
other learning tasks [1].

It is noteworthy that the rise in popularity of deep learning
can be traced back to only the last few years, enabled primarily
by the greater availability of large data sets, containing more
training examples; the efficient use of graphical processing
units (GPUs) and massively parallel commodity hardware to

train deep learning models on these equally massive data
sets as well as the discovery of new methods such as the
rectified linear unit (ReLU) activation function or dropout as
a regularization technique [1]–[4].

While deep learning algorithms and individual architectural
components such as representation transformations, activa-
tion functions or regularization methods may initially be
expressed in mathematical notation, they must eventually be
transcribed into a computer program for real world usage.
For this purpose, there exist a number of open source as
well as commercial machine learning software libraries and
frameworks. Among these are Theano [5], Torch [6], scikit-
learn [7] and many more, which we review in further detail
in Section II of this paper. In November 2015, this list was
extended by TensorFlow, a novel machine learning software
library released by Google [8]. As per the initial publication,
TensorFlow aims to be “an interface for expressing machine
learning algorithms” in “large-scale [. . . ] on heterogeneous
distributed systems” [8].

The remainder of this paper aims to give a thorough review
of TensorFlow and put it in context of the current state of
machine learning. In detail, the paper is further structured
as follows. Section II will provide a brief overview and
history of machine learning software libraries, listing but
not comparing projects similar to TensorFlow. Subsequently,
Section III discusses in depth the computational paradigms
underlying TensorFlow. In Section IV we explain the current
programming interface in the various supported languages. To
inspect and debug models expressed in TensorFlow, there exist
powerful visualization tools, which we examine in Section
V. Section VI then gives a comparison of TensorFlow and
alternative deep learning libraries on a qualitative as well as
quantitative basis. Before concluding our review in Section
VIII, Section VII studies current real world use cases of
TensorFlow in literature and industry.

II. HISTORY OF MACHINE LEARNING LIBRARIES

In this section, we aim to give a brief overview and key
milestones in the history of machine learning software li-
braries. We begin with a review of libraries suitable for a wide
range of machine learning and data analysis purposes, reaching
back more than 20 years. We then perform a more focused
study of recent programming frameworks suited especially to
the task of deep learning. Figure 1 visualizes this section in
a timeline. We wish to emphasize that this section does in no

ar
X

iv
:1

61
0.

01
17

8v
1 

 [
cs

.L
G

] 
 1

 O
ct

 2
01

6



way compare TensorFlow, as we have dedicated Section VI to
this specific purpose.

A. General Machine Learning

In the following paragraphs we list and briefly review a
small set of general machine learning libraries in chronolog-
ical order. With general, we mean to describe any particular
library whose common use cases in the machine learning and
data science community include but are not limited to deep
learning. As such, these libraries may be used for statisti-
cal analysis, clustering, dimensionality reduction, structured
prediction, anomaly detection, shallow (as opposed to deep)
neural networks and other tasks.

We begin our review with a library published 21 years
before TensorFlow: MLC++ [9]. MLC++ is a software library
developed in the C++ programming language providing algo-
rithms alongside a comparison framework for a number of
data mining, statistical analysis as well as pattern recognition
techniques. It was originally developed at Stanford University
in 1994 and is now owned and maintained by Silicon Graphics,
Inc (SGI1). To the best of our knowledge, MLC++ is the oldest
machine learning library still available today.

Following MLC++ in the chronological order, OpenCV2

(Open Computer Vision) was released in the year 2000 by
Bradski et al. [10]. It is aimed primarily at solving learning
tasks in the field of computer vision and image recognition,
including a collection of algorithms for face recognition,
object identification, 3D-model extraction and other purposes.
It is released under a BSD license and provides interfaces in
multiple programming languages such as C++, Python and
MATLAB.

Another machine learning library we wish to mention is
scikit-learn3 [7]. The scikit-learn project was originally devel-
oped by David Cournapeu as part of the Google Summer of
Code program4 in 2008. It is an open source machine learning
library written in Python, on top of the NumPy, SciPy and
matplotlib frameworks. It is useful for a large class of both
supervised and unsupervised learning problems.

The Accord.NET5 library stands apart from the aforemen-
tioned examples in that it is written in the C# (“C Sharp”)
programming language. Released in 2008, it is composed not
only of a variety of machine learning algorithms, but also
signal processing modules for speech and image recognition
[11].

Massive Online Analysis6 (MOA) is an open source frame-
work for online and offline analysis of massive, potentially
infinite, data streams. MOA includes a variety of tools for
classification, regression, recommender systems and other
disciplines. It is written in the Java programming language

1https://www.sgi.com/tech/mlc/
2http://opencv.org
3http://scikit-learn.org/stable/
4https://summerofcode.withgoogle.com
5http://accord-framework.net/index.html
6http://moa.cms.waikato.ac.nz

and maintained by staff of the University of Waikato, New
Zealand. It was conceived in 2010 [12].

The Mahout7 project, part of Apache Software Foundation8,
is a Java programming environment for scalable machine
learning applications, built on top of the Apache Hadoop9 plat-
form. It allows for analysis of large datasets distributed in the
Hadoop Distributed File System (HDFS) using the MapReduce
programming paradigm. Mahout provides machine learning
algorithms for classification, clustering and filtering.

Pattern10 is a Python machine learning module we include
in our list due to its rich set of web mining facilities. It com-
prises not only general machine learning algorithms (e.g. clus-
tering, classification or nearest neighbor search) and natural
language processing methods (e.g. n-gram search or sentiment
analysis), but also a web crawler that can, for example, fetch
Tweets or Wikipedia entries, facilitating quick data analysis on
these sources. It was published by the University of Antwerp
in 2012 and is open source.

Lastly, Spark MLlib11 is an open source machine learning
and data analysis platform released in 2015 and built on top
of the Apache Spark12 project [13], a fast cluster computing
system. Similar to Apache Mahout, it supports processing
of large scale distributed datasets and training of machine
learning models across a cluster of commodity hardware. For
this, it includes classification, regression, clustering and other
machine learning algorithms [14].

B. Deep Learning

While the software libraries mentioned in the previous
section are useful for a great variety of different machine
learning and statistical analysis tasks, the following paragraphs
list software frameworks especially effective in training deep
learning models.

The first and oldest framework in our list suited to the
development and training of deep neural networks is Torch13,
released already in 2002 [6]. Torch consisted originally of
a pure C++ implementation and interface. Today, its core
is implemented in C/CUDA while it exposes an interface
in the Lua14 scripting language. For this, Torch makes use
of a LuaJIT (just-in-time) compiler to connect Lua routines
to the underlying C implementations. It includes, inter alia,
numerical optimization routines, neural network models as
well as general purpose n-dimensional array (tensor) objects.

Theano15, released in 2008 [5], is another noteworthy deep
learning library. We note that while Theano enjoys greatest
popularity among the machine learning community, it is, in
essence, not a machine learning library at all. Rather, it is a

7http://mahout.apache.org
8http://www.apache.org
9http://hadoop.apache.org
10http://www.clips.ua.ac.be/pages/pattern
11http://spark.apache.org/mllib
12http://spark.apache.org/
13http://torch.ch
14https://www.lua.org
15http://deeplearning.net/software/theano/
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Fig. 1: A timeline showing the release of machine-learning libraries discussed in section I in the last 25 years.

programming framework that allows users to declare math-
ematical expressions symbolically, as computational graphs.
These are then optimized, eventually compiled and finally
executed on either CPU or GPU devices. As such, [5] labels
Theano a “mathematical compiler”.

Caffe16 is an open source deep learning library maintained
by the Berkeley Vision and Learning Center (BVLC). It
was released in 2014 under a BSD-License [15]. Caffe is
implemented in C++ and uses neural network layers as its
basic computational building blocks (as opposed to Theano
and others, where the user must define individual mathematical
operations making up layers). A deep learning model, con-
sisting of many such layers, is stored in the Google Protocol
Buffer format. While models can be defined manually in this
Protocol Buffer “language”, there exist bindings to Python
and MATLAB to generate them programmatically. Caffe is
especially well suited to the development and training of
convolutional neural networks (CNNs or ConvNets), used
extensively in the domain of image recognition.

While the aforementioned machine learning frameworks
allowed for the definition of deep learning models in Python,
MATLAB and Lua, the Deeplearning4J17 (DL4J) library
enables also the Java programmer to create deep neural
networks. DL4J includes functionality to create Restricted
Boltzmann machines, convolutional and recurrent neural net-
works, deep belief networks and other types of deep learning
models. Moreover, DL4J enables horizontal scalability using
distributed computing platforms such as Apache Hadoop or
Spark. It was released in 2014 by Adam Gibson under an
Apache 2.0 open source license.

Lastly, we add the NVIDIA Deep Learning SDK18 to
to this list. Its main goal is to maximize the performance
of deep learning algorithms on (NVIDIA) GPUs. The SDK
consists of three core modules. The first, cuDNN, provides
high performance GPU implementations for deep learning
algorithms such as convolutions, activation functions and
tensor transformations. The second is a linear algebra library,
cuBLAS, enabling GPU-accelerated mathematical operations
on n-dimensional arrays. Lastly, cuSPARSE includes a set of
routines for sparse matrices tuned for high efficiency on GPUs.
While it is possible to program in these libraries directly, there

16http://caffe.berkeleyvision.org
17http://deeplearning4j.org
18https://developer.nvidia.com/deep-learning-software

exist also bindings to other deep learning libraries, such as
Torch19.

III. THE TENSORFLOW PROGRAMMING MODEL

In this section we provide an in-depth discussion of the
abstract computational principles underlying the TensorFlow
software library. We begin with a thorough examination of the
basic structural and architectural decisions made by the Ten-
sorFlow development team and explain how machine learning
algorithms may be expressed in its dataflow graph language.
Subsequently, we study TensorFlow’s execution model and
provide insight into the way TensorFlow graphs are assigned
to available hardware units in a local as well as distributed
environment. Then, we investigate the various optimizations
incorporated into TensorFlow, targeted at improving both
software and hardware efficiency. Lastly, we list extensions to
the basic programming model that aid the user in both com-
putational as well as logistical aspects of training a machine
learning model with TensorFlow.

A. Computational Graph Architecture

In TensorFlow, machine learning algorithms are represented
as computational graphs. A computational or dataflow graph
is a form of directed graph where vertices or nodes describe
operations, while edges represent data flowing between these
operations. If an output variable z is the result of applying a
binary operation to two inputs x and y, then we draw directed
edges from x and y to an output node representing z and
annotate the vertex with a label describing the performed
computation. Examples for computational graphs are given
in Figure 2. The following paragraphs discuss the principle
elements of such a dataflow graph, namely operations, tensors,
variables and sessions.

1) Operations: The major benefit of representing an algo-
rithm in form of a graph is not only the intuitive (visual)
expression of dependencies between units of a computational
model, but also the fact that the definition of a node within
the graph can be kept very general. In TensorFlow, nodes
represent operations, which in turn express the combination or
transformation of data flowing through the graph [8]. An oper-
ation can have zero or more inputs and produce zero or more
outputs. As such, an operation may represent a mathematical

19https://github.com/soumith/cudnn.torch



z

x y

+

z = x+ y

x>w

x w

dot

b

z

+

ŷ
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Fig. 2: Examples of computational graphs. The left graph
displays a very simple computation, consisting of just an
addition of the two input variables x and y. In this case, z
is the result of the operation +, as the annotation suggests.
The right graph gives a more complex example of computing
a logistic regression variable ŷ in for some example vector x,
weight vector w as well as a scalar bias b. As shown in the
graph, ŷ is the result of the sigmoid or logistic function σ.

equation, a variable or constant, a control flow directive, a
file I/O operation or even a network communication port.
It may seem unintuitive that an operation, which the reader
may associate with a function in the mathematical sense, can
represent a constant or variable. However, a constant may be
thought of as an operation that takes no inputs and always
produces the same output corresponding to the constant it
represents. Analogously, a variable is really just an operation
taking no input and producing the current state or value of
that variable. Table ?? gives an overview of different kinds of
operations that may be declared in a TensorFlow graph.

Any operation must be backed by an associated implemen-
tation. In [8] such an implementation is referred to as the
operation’s kernel. A particular kernel is always specifically
built for execution on a certain kind of device, such as a CPU,
GPU or other hardware unit.

2) Tensors: In TensorFlow, edges represent data flowing
from one operation to another and are referred to as tensors.
A tensor is a multi-dimensional collection of homogeneous
values with a fixed, static type. The number of dimensions
of a tensor is termed its rank. A tensor’s shape is the
tuple describing its size, i.e. the number of components, in
each dimension. In the mathematical sense, a tensor is the
generalization of two-dimensional matrices, one-dimensional

Category Examples
Element-wise operations Add, Mul, Exp
Matrix operations MatMul, MatrixInverse
Value-producing operations Constant, Variable
Neural network units SoftMax, ReLU, Conv2D
Checkpoint operations Save, Restore

TABLE I: Examples for TensorFlow operations [8].

vectors and also scalars, which are simply tensors of rank zero.
In terms of the computational graph, a tensor can be seen

as a symbolic handle to one of the outputs of an operation.
A tensor itself does not hold or store values in memory, but
provides only an interface for retrieving the value referenced
by the tensor. When creating an operation in the TensorFlow
programming environment, such as for the expression x + y,
a tensor object is returned. This tensor may then be supplied
as input to other computations, thereby connecting the source
and destination operations with an edge. By these means, data
flows through a TensorFlow graph.

Next to regular tensors, TensorFlow also provides a
SparseTensor data structure, allowing for a more space-
efficient dictionary-like representation of sparse tensors with
only few non-zeros entries.

3) Variables: In a typical situation, such as when per-
forming stochastic gradient descent (SGD), the graph of a
machine learning model is executed from start to end multiple
times for a single experiment. Between two such invocations,
the majority of tensors in the graph are destroyed and do
not persist. However, it is often necessary to maintain state
across evaluations of the graph, such as for the weights and
parameters of a neural network. For this purpose, there exist
variables in TensorFlow, which are simply special operations
that can be added to the computational graph.

In detail, variables can be described as persistent, mutable
handles to in-memory buffers storing tensors. As such, vari-
ables are characterized by a certain shape and a fixed type.
To manipulate and update variables, TensorFlow provides the
assign family of graph operations.

When creating a variable node for a TensorFlow graph, it
is necessary to supply a tensor with which the variable is
initialized upon graph execution. The shape and data type of
the variable is then deduced from this initializer. Interestingly,
the variable itself does not store this initial tensor. Rather,
constructing a variable results in the addition of three distinct
nodes to the graph:

1) The actual variable node, holding the mutable state.
2) An operation producing the initial value, often a con-

stant.
3) An initializer operation, that assigns the initial value

to the variable tensor upon evaluation of the graph.

An example for this is given in Figure 3.
4) Sessions: In TensorFlow, the execution of operations

and evaluation of tensors may only be performed in a special
environment referred to as session. One of the responsibilities
of a session is to encapsulate the allocation and management
of resources such as variable buffers. Moreover, the Session
interface of the TensorFlow library provides a run routine,
which is the primary entry point for executing parts or the
entirety of a computational graph. This method takes as input
the nodes in the graph whose tensors should be computed and
returned. Moreover, an optional mapping from arbitrary nodes
in the graph to respective replacement values — referred to as
feed nodes — may be supplied to run as well [8].
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Fig. 3: The three nodes that are added to the computational
graph for every variable definition. The first, v, is the variable
operation that holds a mutable in-memory buffer containing
the value tensor of the variable. The second, i, is the node
producing the initial value for the variable, which can be
any tensor. Lastly, the assign node will set the variable
to the initializer’s value when executed. The assign node
also produces a tensor referencing the initialized value v′ of
the variable, such that it may be connected to other nodes
as necessary (e.g. when using a variable as the initializer for
another variable).

Upon invocation of run, TensorFlow will start at the
requested output nodes and work backwards, examining the
graph dependencies and computing the full transitive closure
of all nodes that must be executed. These nodes may then
be assigned to one or many physical execution units (CPUs,
GPUs etc.) on one or many machines. The rules by which
this assignment takes place are determined by TensorFlow’s
placement algorithm, discussed in detail in Subsection ??.
Furthermore, as there exists the possibility to specify explicit
orderings of node evaluations, called control dependencies, the
execution algorithm will ensure that these dependencies are
maintained.

B. Execution Model

To execute computational graphs composed of the various
elements just discussed, TensorFlow divides the tasks for its
implementation among four distinct groups: the client, the
master, a set of workers and lastly a number of devices. When
the client requests evaluation of a TensorFlow graph via a
Session’s run routine, this query is sent to the master
process, which in turn delegates the task to one or more worker
processes and coordinates their execution. Each worker is
subsequently responsible for overseeing one or more devices,
which are the physical processing units for which the kernels
of an operation are implemented.

Within this model, there are two degrees of scalability. The
first degree pertains to scaling the number of machines on
which a graph is executed. The second degree refers to the
fact that on each machine, there may then be more than
one device, such as, for example, five independent GPUs
and/or three CPUs. For this reason, there exist two “versions”
of TensorFlow, one for local execution on a single machine
(but possibly many devices), and one supporting a distributed
implementation across many machines and many devices.

client master
run

worker A

GPU0 CPU0

. . .

worker B

CPU0 CPU1

. . .

Fig. 4: A visualization of the different execution agents in a
multi-machine, multi-device hardware configuration.

Figure 4 visualizes a possible distributed setup. While the
initial release of TensorFlow supported only single-machine
execution, the distributed version was open-sourced on April
13, 2016 [16].

1) Devices: Devices are the smallest, most basic entities
in the TensorFlow execution model. All nodes in the graph,
that is, the kernel of each operation, must eventually be
mapped to an available device to be executed. In practice,
a device will most often be either a CPU or a GPU. How-
ever, TensorFlow supports registration of further kinds of
physical execution units by the user. For example, in May
2016, Google announced its Tensor Processing Unit (TPU),
a custom built ASIC (application-specific-integrated-circuit)
optimized specifically for fast tensor computations [17]. It is
thus understandably easy to integrate new device classes as
novel hardware emerges.

To oversee the evaluation of nodes on a device, a worker
process is spawned by the master. As a worker process may
manage one or many devices on a single machine, a device is
identified not only by a name, but also an index for its worker
group. For example, the first CPU in a particular group may
be identified by the string “/cpu:0”.

2) Placement Algorithm: To determine what nodes to as-
sign to which device, TensorFlow makes use of a placement
algorithm. The placement algorithm simulates the execution
of the computational graph and traverses its nodes from
input tensors to output tensors. To decide on which of the
available devices D = {d1, . . . , dn} to place a given node
ν encountered during this traversal, the algorithm consults
a cost model Cν(d). This cost model takes into account
four pieces of information to determine the optimal device
d̂ = argmind∈D Cν(d) on which to place the node during
execution:

1) Whether or not there exists an implementation (kernel)
for a node on the given device at all. For example, if
there is no GPU kernel for a particular operation, any
GPU device would automatically incur an infinite cost.

2) Estimates of the size (in bytes) for a node’s input and
output tensors.

3) The expected execution time for the kernel on the device.
4) A heuristic for the cost of cross-device (and possibly

cross-machine) transmission of the input tensors to the
operation, in the case that the input tensors have been



placed on nodes different from the one currently under
consideration.

3) Cross-Device Execution: If the hardware configuration
of the user’s system provides more than one device, the
placement algorithm will often distribute a graph’s nodes
among these devices. This can be seen as partitioning the set
of nodes into classes, one per device. As a consequence, there
may be cross-device dependencies between nodes that must be
handled via a number of additional steps. Let us consider for
this two devices A and B with particular focus on a node ν on
device A. If ν’s output tensor forms the input to some other
operations α, β on device B, there initially exist cross-device
edges ν → α and ν → β from device A to device B. This is
visualized in Figure 5a.

In practice, there must be some means of transmitting ν’s
output tensor from A, say a GPU device, to B — maybe
a CPU device. For this reason, TensorFlow initially replaces
the two edges ν → α and ν → β by three new nodes. On
device A, a send node is placed and connected to ν. In
tandem, on device B, two recv nodes are instantiated and
attached to α and β, respectively. The send and recv nodes
are then connected by two additional edges. This step is shown
in Figure 5b. During execution of the graph, cross-device
communication of data occurs exclusively via these special
nodes. When the devices are located on separate machines,
transmission between the worker processes on these machines
may involve remote communication protocols such as TCP or
RDMA.

Finally, an important optimization made by TensorFlow at
this step is “canonicalization” of (send, receive) pairs. In
the setup displayed in Figure 5b, the existence of each recv
node on device B would imply allocation and management of
a separate buffer to store ν’s output tensor, so that it may then
be fed to nodes α and β, respectively. However, an equivalent
and more efficient transformation places only one recv node
on device B, streams all output from ν to this single node,
and then to the two dependent nodes α and β. This last and
final evolution is given in Figure 5c.

C. Optimizations

To ensure a maximum of efficiency and performance of the
TensorFlow execution model, a number of optimizations are
built into the library. In this subsection, we examine three
such improvements: common subgraph elimination, execution
scheduling and finally lossy compression.

1) Common Subgraph Elimination: An optimization per-
formed by many modern compilers is common subexpression
elimination, whereby a compiler may possibly replace the
computation of an identical value two or more times by a
single instance of that computation. The result is then stored
in a temporary variable and reused where it was previously re-
calculated. Similarly, in a TensorFlow graph, it may occur that
the same operation is performed on identical inputs more than
once. This can be inefficient if the computation happens to
be an expensive one. Moreover, it may incur a large memory
overhead given that the result of that operation must be held in

Device A

ν

Device B

β

α

(a)

Device A

ν

Device B

β

α

send

recv

recv

(b)

Device A

ν

Device B

β

α

send recv

(c)

Fig. 5: The three stages of cross-device communication be-
tween graph nodes in TensorFlow. Figure 5a shows the initial,
conceptual connections between nodes on different devices.
Figure 5b gives a more practical overview of how data is
actually transmitted across devices using send and recv
nodes. Lastly, Figure 5c shows the final, canonicalized setup,
where there is at most one recv node per destination device.

memory multiple times. Therefore, TensorFlow also employs a
common subexpression, or, more aptly put, common subgraph
elimination pass prior to execution. For this, the computational
graph is traversed and every time two or more operations of the
same type (e.g. MatMul) receiving the same input tensors are
encountered, they are canonicalized to only one such subgraph.
The output tensor of that single operation is then redirected to
all dependent nodes. Figure 6 gives an example of common
subgraph elimination.

2) Scheduling: A simple yet powerful optimization is to
schedule node execution as late as possible. Ensuring that the
results of operations remain in memory only for the minimum
required amount of time reduces peak memory consumption
and can thus greatly improve the overall performance of the
system. The authors of [8] note that this is especially vital on
devices such as GPUs, where memory resources are scarce.
Furthermore, careful scheduling also pertains to the activation
of send and recv nodes, where not only memory but also
network resources are contested.

3) Lossy Compression: One of the primary goals of many
machine learning algorithms used for classification, recogni-
tion or other tasks is to build robust models. With robust
we mean that an optimally trained model should ideally not
change its response if it is first fed a signal and then a
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Fig. 6: An example of how common subgraph elimination is
used to transform the equations z = x + y, z′ = x + y,
z2 = z · z′ to just two equations z = x + y and z2 = z · z.
This computation could theoretically be optimized further to a
square operation requiring only one input (thus reducing the
cost of data movement), though it is not known if TensorFlow
employs such secondary canonicalization.

noisy variation of that signal. As such, these machine learning
algorithms typically do not require high precision arithmetic as
provided by standard IEEE 754 32-bit floating point values.
Rather, 16 bits of precision in the mantissa would do just
as well. For this reason, another optimization performed by
TensorFlow is the internal addition of conversion nodes to the
computational graph, which convert such high-precision 32-bit
floating-point values to truncated 16-bit representations when
communicating across devices and across machines. On the
receiving end, the truncated representation is converted back
to 32 bits simply by filling in zeros, rather than rounding [8].

D. Additions to the Basic Programming Model

Having discussed the basic computational paradigms and
execution model of TensorFlow, we will now review three
more advanced topics that we deem highly relevant for any-
one wishing to use TensorFlow to create machine learning
algorithms. First, we discuss how TensorFlow handles gradient
back-propagation, an essential concept for many deep learning
applications. Then, we study how TensorFlow graphs support
control flow. Lastly, we briefly touch upon the topic of
checkpoints, as they are very useful for maintenance of large
models.

1) Back-Propagation Nodes: In a large number of deep
learning and other machine learning algorithms, it is necessary

to compute the gradients of particular nodes of the computa-
tional graph with respect to one or many other nodes. For
example, in a neural network, we may compute the cost c
of the model for a given example x by passing that example
through a series of non-linear transformations. If the neural
network consists of two hidden layers represented by functions
f(x;w) = fx(w) and g(x;w) = gx(w) with internal weights
w, we can express the cost for that example as c = (fx ◦
gx)(w) = fx(gx(w)). We would then typically calculate the
gradient dc/dw of that cost with respect to the weights and
use it to update w. Often, this is done by means of the back-
propagation algorithm, which traverses the graph in reverse to
compute the chain rule [fx(gx(w))]

′ = f ′x(gx(w)) · g′x(w).
In [18], two approaches for back-propagating gradients

through a computational graph are described. The first, which
the authors refer to as symbol-to-number differentiation, re-
ceives a set of input values and then computes the numerical
values of the gradients at those input values. It does so
by explicitly traversing the graph first in the forward order
(forward-propagation) to compute the cost, then in reverse
order (back-propagation) to compute the gradients via the
chain rule. Another approach, more relevant to TensorFlow,
is what [18] calls symbol-to-symbol derivatives and [8] terms
automatic gradient computation. In this case, gradients are
not computed by an explicit implementation of the back-
propagation algorithm. Rather, special nodes are added to
the computational graph that calculate the gradient of each
operation and thus ultimately the chain rule. To perform back-
propagation, these nodes must then simply be executed like
any other nodes by the graph evaluation engine. As such, this
approach does not produce the desired derivatives as a numeric
value, but only as a symbolic handle to compute those values.

When TensorFlow needs to compute the gradient of a
particular node ν with respect to some other tensor α, it
traverses the graph in reverse order from ν to α. Each
operation o encountered during this traversal represents a
function depending on α and is one of the “links” in the chain
(ν ◦ . . . ◦ o ◦ . . . )(α) producing the output tensor of the graph.
Therefore, TensorFlow adds a gradient node for each such
operation o that takes the gradient of the previous link (the
outer function) and multiplies it with its own gradient. At the
end of the traversal, there will be a node providing a symbolic
handle to the overall target derivative dν

dα , which implicitly
implements the back-propagation algorithm. It should now be
clear that back-propagation in this symbol-to-symbol approach
is just another operation, requiring no exceptional handling.
Figure 7 shows how a computational graph may look before
and after gradient nodes are added.

In [8] it is noted that symbol-to-symbol derivatives may
incur a considerable performance cost and especially result
in increased memory overhead. To see why, it is important
to understand that there exist two equivalent formulations
of the chain rule. The first reuses previous computations
and therefore requires them to be stored longer than strictly
necessary for forward-propagation. For arbitrary functions f ,
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Fig. 7: A computational graph before (7a) and after (7b)
gradient nodes are added. In this symbol-to-symbol approach,
the gradient dz

dw is just simply an operation like any other and
therefore requires no special handling by the graph evaluation
engine.

g and h it is given in Equation 1:

df

dw
= f ′(y) · g′(x) · h′(w) with y = g(x), x = h(w) (1)

The second possibility for computing the chain rule was
already shown, where each function recomputes all of its
arguments and invokes every function it depends on. It is given
in Equation 2 for reference:

df

dw
= f ′(g(h(w))) · g′(h(w)) · h′(w) (2)

According to [8], TensorFlow currently employs the first
approach. Given that the inner-most functions must be recom-
puted for almost every link of the chain if this approach is
not employed, and taking into consideration that this chain
may consist of many hundreds or thousands of operations,
this choice seems sensible. However, on the flip side, keeping
tensors in memory for long periods of time is also not optimal,
especially on devices like GPUs where memory resources are
scarce. For Equation 2, memory held by tensors could in
theory be freed as soon as it has been processed by its graph
dependencies. For this reason, in [8] the development team
of TensorFlow states that recomputing certain tensors rather
than keeping them in memory may be a possible performance
improvement for the future.

2) Control Flow: Some machine learning algorithms may
benefit from being able to control the flow of their execution,
performing certain steps only under a particular condition
or repeating some computation a fixed or variable number
of times. For this, TensorFlow provides a set of control
flow primitives including if-conditionals and while-loops.
The possibility of loops is the reason why a TensorFlow
computational graph is not necessarily acyclic. If the number
of iterations for of a loop would be fixed and known at
graph compile-time, its body could be unrolled into an acyclic
sequence of computations, one per loop iteration [5]. However,

to support a variable amount of iterations, TensorFlow is
forced to jump through an additional set of hoops, as described
in [8].

One aspect that must be especially cared for when intro-
ducing control flow is back-propagation. In the case of a
conditional, where an if-operation returns either one or the
other tensor, it must be known which branch was taken by
the node during forward-propagation so that gradient nodes
are added only to this branch. Moreover, when a loop body
(which may be a small graph) was executed a certain number
of times, the gradient computation does not only need to know
the number of iterations performed, but also requires access to
each intermediary value produced. This technique of stepping
through a loop in reverse to compute the gradients is referred
to as back-propagation through time in [5].

3) Checkpoints: Another extension to TensorFlow’s basic
programming model is the notion of checkpoints, which allow
for persistent storage and recovery of variables. It is possible to
add Save nodes to the computational graph and connect them
to variables whose tensors you wish to serialize. Furthermore,
a variable may be connected to a Restore operation, which
deserializes a stored tensor at a later point. This is especially
useful when training a model over a long period of time
to keep track of the model’s performance while reducing
the risk of losing any progress made. Also, checkpoints are
a vital element to ensuring fault tolerance in a distributed
environment [8].

IV. THE TENSORFLOW PROGRAMMING INTERFACE

Having conveyed the abstract concepts of TensorFlow’s
computational model in Section III, we will now concretize
those ideas and speak to TensorFlow’s programming interface.
We begin with a brief discussion of the available language
interfaces. Then, we provide a more hands-on look at Ten-
sorFlow’s Python API by walking through a simple practical
example. Lastly, we give insight into what higher-level ab-
stractions exist for TensorFlow’s API, which are especially
beneficial for rapid prototyping of machine learning models.

A. Interfaces

There currently exist two programming interfaces, in C++
and Python, that permit interaction with the TensorFlow back-
end. The Python API boasts a very rich feature set for creation
and execution of computational graphs. As of this writing,
the C++ interface (which is really just the core backend
implementation) provides a comparatively much more limited
API, allowing only to execute graphs built with Python and
serialized to Google’s Protocol Buffer20 format. While there is
experimental support for also building computational graphs
in C++, this functionality is currently not as extensive as in
Python.

It is noteworthy that the Python API integrates very well
with NumPy21, a popular open source Python numeric and

20https://developers.google.com/protocol-buffers/
21http://www.numpy.org



scientific programming library. As such, TensorFlow tensors
may be interchanged with NumPy ndarrays in many places.

B. Walkthrough

In the following paragraphs we give a step-by-step walk-
through of a practical, real-world example of TensorFlow’s
Python API. We will train a simple multi-layer perceptron
(MLP) with one input and one output layer to classify hand-
written digits in the MNIST22 dataset. In this dataset, the
examples are small images of 28× 28 pixels depicting hand-
written digits in ∈ {0, . . . , 9}. We receive each such example
as a flattened vector of 784 gray-scale pixel intensities. The
label for each example is the digit it is supposed to represent.

We begin our walkthrough by importing the TensorFlow
library and reading the MNIST dataset into memory. For this
we assume a utility module mnist_data with a method
read which expects a path to extract and store the dataset.
Moreover, we pass the parameter one_hot=True to specify
that each label be given to us as a one-hot-encoded vector
(d1, . . . , d10)

> where all but the i-th component are set to
zero if an example represents the digit i:

import tensorflow as tf

# Download and extract the MNIST data set.
# Retrieve the labels as one-hot-encoded vectors.
mnist = mnist_data.read("/tmp/mnist", one_hot=True)

Next, we create a new computational graph via the
tf.Graph constructor. To add operations to this graph, we
must register it as the default graph. The way the TensorFlow
API is designed, library routines that create new operation
nodes always attach these to the current default graph. We
register our graph as the default by using it as a Python context
manager in a with-as statement:

# Create a new graph
graph = tf.Graph()

# Register the graph as the default one to add nodes
with graph.as_default():
# Add operations ...

We are now ready to populate our computational graph
with operations. We begin by adding two placeholder nodes
examples and labels. Placeholders are special variables
that must be replaced with concrete tensors upon graph execu-
tion. That is, they must be supplied in the feed_dict argu-
ment to Session.run(), mapping tensors to replacement
values. For each such placeholder, we specify a shape and
data type. An interesting feature of TensorFlow at this point
is that we may specify the Python keyword None for the first
dimension of each placeholder shape. This allows us to later on
feed a tensor of variable size in that dimension. For the column
size of the example placeholder, we specify the number of
features for each image, meaning the 28×28 = 784 pixels. The
label placeholder should expect 10 columns, corresponding

22http://yann.lecun.com/exdb/mnist/

to the 10-dimensional one-hot-encoded vector for each label
digit:

# Using a 32-bit floating-point data type tf.float32
examples = tf.placeholder(tf.float32, [None, 784])
labels = tf.placeholder(tf.float32, [None, 10])

Given an example matrix X ∈ Rn×784 containing n images,
the learning task then applies an affine transformation X·W+
b, where W is a weight matrix ∈ R784×10 and b a bias vector
∈ R10. This yields a new matrix Y ∈ Rn×10, containing
the scores or logits of our model for each example and each
possible digit. These scores are more or less arbitrary values
and not a probability distribution, i.e. they need neither be
∈ [0, 1] nor sum to one. To transform the logits into a valid
probability distribution, giving the likelihood Pr[x = i] that
the x-th example represents the digit i, we make use of the
softmax function, given in Equation 3. Our final estimates are
thus calculated by softmax(X ·W + b), as shown below:

# Draw random weights for symmetry breaking
weights = tf.Variable(tf.random_uniform([784, 10]))
# Slightly positive initial bias
bias = tf.Variable(tf.constant(0.1, shape=[10]))
# tf.matmul performs the matrix multiplication XW
# Note how the + operator is overloaded for tensors
logits = tf.matmul(examples, weights) + bias
# Applies the operation element-wise on tensors
estimates = tf.nn.softmax(logits)

softmax(x)i =
exp(xi)∑
j exp(xj)

(3)

Next, we compute our objective function, producing the
error or loss of the model given its current trainable parameters
W and b. We do this by calculating the cross entropy
H(L,Y)i = −

∑
j Li,j · log(Yi,j) between the probability

distributions of our estimates Y and the one-hot-encoded
labels L. More precisely, we consider the mean cross entropy
over all examples as the loss:

# Computes the cross-entropy and sums the rows
cross_entropy = -tf.reduce_sum(

labels * tf.log(estimates), [1])
loss = tf.reduce_mean(cross_entropy)

Now that we have an objective function, we
can run (stochastic) gradient descent to update the
weights of our model. For this, TensorFlow provides a
GradientDescentOptimizer class. It is initialized with
the learning rate of the algorithm and provides an operation
minimize, to which we pass our loss tensor. This is the
operation we will run repeatedly in a Session environment
to train our model:

# We choose a learning rate of 0.5
gdo = tf.train.GradientDescentOptimizer(0.5)
optimizer = gdo.minimize(loss)

Finally, we can actually train our algorithm. For this,
we enter a session environment using a tf.Session as
a context manager. We pass our graph object to its con-
structor, so that it knows which graph to manage. To then



execute nodes, we have several options. The most gen-
eral way is to call Session.run() and pass a list of
tensors we wish to compute. Alternatively, we may call
eval() on tensors and run() on operations directly.
Before evaluating any other node, we must first ensure
that the variables in our graph are initialized. Theoreti-
cally, we could run the Variable.initializer oper-
ation for each variable. However, one most often just uses
the tf.initialize_all_variables() utility opera-
tion provided by TensorFlow, which in turn executes the
initializer operation for each Variable in the graph.
Then, we can perform a certain number of iterations of
stochastic gradient descent, fetching an example and label
mini-batch from the MNIST dataset each time and feeding
it to the run routine. At the end, our loss will (hopefully) be
small:

with tf.Session(graph=graph) as session:
# Execute the operation directly
tf.initialize_all_variables().run()
for step in range(1000):

# Fetch next 100 examples and labels
x, y = mnist.train.next_batch(100)
# Ignore the result of the optimizer (None)
_, loss_value = session.run(

[optimizer, loss],
feed_dict={examples: x, labels: y})

print(’Loss at step {0}: {1}’
.format(step, loss_value))

The full code listing for this example, along with some
additional implementation to compute an accuracy metric at
each time step is given in Appendix I.

C. Abstractions

You may have observed how a relatively large amount of
effort was required to create just a very simple two-layer
neural network. Given that deep learning, by implication of its
name, makes use of deep neural networks with many hidden
layers, it may seem infeasible to each time create weight and
bias variables, perform a matrix multiplication and addition
and finally apply some non-linear activation function. When
testing ideas for new deep learning models, scientists often
wish to rapidly prototype networks and quickly exchange
layers. In that case, these many steps may seem very low-level,
repetitive and generally cumbersome. For this reason, there
exist a number of open source libraries that abstract these
concepts and provide higher-level building blocks, such as
entire layers. We find PrettyTensor23, TFLearn24 and Keras25

especially noteworthy. The following paragraphs give a brief
overview of the first two abstraction libraries.

1) PrettyTensor: PrettyTensor is developed by Google and
provides a high-level interface to the TensorFlow API via
the Builder pattern. It allows the user to wrap TensorFlow
operations and tensors into “pretty” versions and then quickly
chain any number of layers operating on these tensors. For

23https://github.com/google/prettytensor
24https://github.com/tflearn/tflearn
25http://keras.io

example, it is possible to feed an input tensor into a fully
connected (“dense”) neural network layer as we did in Sub-
section IV-B with just a single line of code. Shown below is
an example use of PrettyTensor, where a standard TensorFlow
placeholder is wrapped into a library-compatible object and
then fed through three fully connected layers to finally output
a softmax distribution.

examples = tf.placeholder([None, 784], tf.float32)
softmax = (prettytensor.wrap(examples)

.fully_connected(256, tf.nn.relu)

.fully_connected(128, tf.sigmoid)

.fully_connected(64, tf.tanh)

.softmax(10))

2) TFLearn: TFLearn is another abstraction library built
on top of TensorFlow that provides high-level building blocks
to quickly construct TensorFlow graphs. It has a highly
modular interface and allows for rapid chaining of neural
network layers, regularization functions, optimizers and other
elements. Moreover, while PrettyTensor still relied on the
standard tf.Session setup to train and evaluate a model,
TFLearn adds functionality to easily train a model given an
example batch and corresponding labels. As many TFLearn
functions, such as those creating entire layers, return vanilla
TensorFlow objects, the library is well suited to be mixed
with existing TensorFlow code. For example, we could replace
the entire setup for the output layer discussed in Subsection
IV-B with just a single TFLearn method invocation, leaving
the rest of our code base untouched. Furthermore, TFLearn
handles everything related to visualization with TensorBoard,
discussed in Section V, automatically. Shown below is how we
can reproduce the full 65 lines of standard TensorFlow code
given in Appendix I with less than 10 lines using TFLearn.

import tflearn
import tflearn.datasets.mnist as mnist

X, Y, validX, validY = mnist.load_data(one_hot=True)

# Building our neural network
input_layer = tflearn.input_data(shape=[None, 784])
output_layer = tflearn.fully_connected(input_layer,

10, activation=’softmax’)

# Optimization
sgd = tflearn.SGD(learning_rate=0.5)
net = tflearn.regression(output_layer,

optimizer=sgd)

# Training
model = tflearn.DNN(net)
model.fit(X, Y, validation_set=(validX, validY))

V. VISUALIZATION OF TENSORFLOW GRAPHS

Deep learning models often employ neural networks with
a highly complex and intricate structure. For example, [19]
reports of deep convolutional network based on the Google
Inception model with more than 36,000 individual units,
while [8] states that certain long short-term memory (LSTM)
architectures can span over 15,000 nodes. To maintain a
clear overview of such complex networks, facilitate model



debugging and allow inspection of values on various levels of
detail, powerful visualization tools are required. TensorBoard,
a web interface for graph visualization and manipulation built
directly into TensorFlow, is an example for such a tool. In this
section, we first list a number of noteworthy features of Ten-
sorBoard and then discuss how it is used from TensorFlow’s
programming interface.

A. TensorBoard Features

The core feature of TensorBoard is the lucid visualization of
computational graphs, exemplified in Figure 8a. Graphs with
complex topologies and many layers can be displayed in a
clear and organized manner, allowing the user to understand
exactly how data flows through it. Especially useful is Ten-
sorBoard’s notion of name scopes, whereby nodes or entire
subgraphs may be grouped into one visual block, such as
a single neural network layer. Such name scopes can then
be expanded interactively to show the grouped units in more
detail. Figure 8b shows the expansion of one the name scopes
of Figure 8a.

Furthermore, TensorBoard allows the user to track the
development of individual tensor values over time. For this,
you can attach two kinds of summary operations to nodes
of the computational graph: scalar summaries and histogram
summaries. Scalar summaries show the progression of a scalar
tensor value, which can be sampled at certain iteration counts.
In this way, you could, for example, observe the accuracy
or loss of your model with time. Histogram summary nodes
allow the user to track value distributions, such as those of
neural network weights or the final softmax estimates. Figures
8c and 8d give examples of scalar and histogram summaries,
respectively. Lastly, TensorBoard also allows visualization of
images. This can be useful to show the images sampled for
each mini-batch of an image classification task, or to visualize
the kernel filters of a convolutional neural network [8].

We note especially how interactive the TensorBoard web in-
terface is. Once your computational graph is uploaded, you can
pan and zoom the model as well as expand or contract individ-
ual name scopes. A demonstration of TensorBoard is available
at https://www.tensorflow.org/tensorboard/index.html.

B. TensorBoard in Practice

To integrate TensorBoard into your TensorFlow code, three
steps are required. Firstly, it is wise to group nodes into
name scopes. Then, you may add scalar and histogram sum-
maries to you operations. Finally, you must instantiate a
SummaryWriter object and hand it the tensors produced
by the summary nodes in a session context whenever you
wish to store new summaries. Rather than fetching individual
summaries, it is also possible to combine all summary nodes
into one via the tf.merge_all_summaries() operation.

with tf.name_scope(’Variables’):
x = tf.constant(1.0)
y = tf.constant(2.0)
tf.scalar_summary(’z’, x + y)

merged = tf.merge_all_summaries()

(a)

(b)

(c) (d)

Fig. 8: A demonstration of Tensorboard’s graph visualization
features. Figure ?? shows the complete graph, while Figure
8b displays the expansion of the first layer. Figures 8c and 8d
give examples for scalar and history summaries, respectively.

writer = tf.train.SummaryWriter(’/tmp/log’, graph)

with tf.Session(graph=graph):
for step in range(1000):

writer.add_summary(
merged.eval(), global_step=step)



VI. COMPARISON WITH OTHER DEEP LEARNING
FRAMEWORKS

Next to TensorFlow, there exist a number of other open
source deep learning software libraries, the most popular being
Theano, Torch and Caffe. In this section, we explore the
qualitative as well as quantitative differences between Ten-
sorFlow and each of these alternatives. We begin with a “high
level” qualitative comparison and examine where TensorFlow
diverges or overlaps conceptually or architecturally. Then, we
review a few sources of quantitative comparisons and state as
well as discuss their results.

A. Qualitative Comparison

The following three paragraphs compare Theano, Torch
and Caffe to TensorFlow, respectively. Table II provides an
overview of the most important talking points.

1) Theano: Of the three candidate alternatives we discuss,
Theano, which has a Python frontend, is most similar to Ten-
sorFlow. Like TensorFlow, Theano’s programming model is
declarative rather than imperative and based on computational
graphs. Also, Theano employs symbolic differentiation, as
does TensorFlow. However, Theano is known to have very
long graph compile times as it translates Python code to
C++/CUDA [5]. In part, this is due to the fact that Theano
applies a number of more advanced graph optimization algo-
rithms [5], while TensorFlow currently only performs common
subgraph elimination. Moreover, Theano’s visualization tools
are very poor in comparison to TensorBoard. Next to built-in
functionality to output plain text representations of the graph
or static images, a plugin can be used to generate slightly in-
teractive HTML visualizations. However, it is nowhere near as
powerful as TensorBoard. Lastly, there is also no (out-of-the-
box) support for distributing the execution of a computational
graph, while this is a key feature of TensorFlow.

2) Torch: One of the principle differences between Torch
and TensorFlow is the fact that Torch, while it has a C/CUDA
backend, uses Lua as its main frontend. While Lua(JIT) is
one of the fastest scripting languages and allows for rapid
prototyping and quick execution, it is not yet very mainstream.
This implies that while it may be easy to train and develop
models with Torch, Lua’s limited API and library ecosystem
can make industrial deployment harder compared to a Python-
based library such as TensorFlow (or Theano). Besides the
language aspect, Torch’s programming model is fundamen-
tally quite different from TensorFlow. Models are expressed
in an imperative programming style and not as declarative
computational graphs. This means that the programmer must,
in fact, be concerned with the order of execution of operations.
It also implies that Torch does not use symbol-to-symbol,
but rather symbol-to-number differentiation requiring explicit
forward and backward passes to compute gradients.

3) Caffe: Caffe is most dissimilar to TensorFlow — in var-
ious ways. While there exist high-level MATLAB and Python
frontends to Caffe for model creation, its main interface is
really the Google Protobuf “language” (it is more a fancy,

typed version of JSON), which gives a very different expe-
rience compared to Python. Also, the basic building blocks
in Caffe are not operations, but entire neural network layers.
In that sense, TensorFlow can be considered fairly low-level
in comparison. Like Torch, Caffe has no notion of a compu-
tational graphs or symbols and thus computes derivatives via
the symbol-to-number approach. Caffe is especially well suited
for development of convolutional neural networks and image
recognition tasks, however it falls short in many other state-of-
the-art categories supported well by TensorFlow. For example,
Caffe, by design, does not support cyclic architectures, which
form the basis of RNN, LSTM and other models. Caffe has
no support for distributed execution26.

Library Frontends Style Gradients Distributed
Execution

TensorFlow Python, C++† Declarative Symbolic X‡

Theano Python Declarative Symbolic ×
Torch LuaJIT Imperative Explicit ×
Caffe Protobuf Imperative Explicit ×
† Very limited API.
‡ Starting with TensorFlow 0.8, released in April 2016 [16].

TABLE II: A table comparing TensorFlow to Theano, Torch
and Caffe in several categories.

B. Quantitative Comparison

We will now review three sources of quantitative compar-
isons between TensorFlow and other deep learning libraries,
providing a summary of the most important results of each
work. Furthermore, we will briefly discuss the overall trend
of these benchmarks.

The first work, [20], authored by the Bosch Research
and Technology Center in late March 2016, compares the
performance of TensorFlow, Torch, Theano and Caffe (among
others) with respect to various neural network architectures.
Their setup involves Ubuntu 14.04 running on an Intel Xeon
E5-1650 v2 CPU @ 3.50 GHz and an NVIDIA GeForce GTX
Titan X/PCIe/SSE2 GPU. One benchmark we find noteworthy
tests the relative performance of each library on a slightly
modified reproduction of the LeNet CNN model [21]. More
specifically, the authors measure the forward-propagation time,
which they deem relevant for model deployment, and the
back-propagation time, important for model training. We have
reproduced an excerpt of their results in Table III, where we
show their outcomes on (a) a CPU running 12 threads and (b)
a GPU. Interestingly, for (a), TensorFlow ranks second behind
Torch in both the forward and backward measure while in (b)
TensorFlow’s performance drops significantly, placing it last
in both categories. The authors of [20] note that one reason
for this may be that they used the NVIDIA cuDNN v2 library
for their GPU implementation with TensorFlow while using
cuDNN v3 for the others. They state that as of their writing,

26https://github.com/BVLC/caffe/issues/876

https://github.com/BVLC/caffe/issues/876


Library Forward (ms) Backward (ms)
TensorFlow 16.4 50.1

Torch 4.6 16.5
Caffe 33.7 66.4

Theano 78.7 204.3

(a) CPU (12 threads)

Library Forward (ms) Backward (ms)
TensorFlow 4.5 14.6

Torch 0.5 1.7
Caffe 0.8 1.9

Theano 0.5 1.4

(b) GPU

TABLE III: This table shows the benchmarks performed
by [20], where TensorFlow, Torch, Caffe and Theano are
compared on a LeNet model reproduction [21]. IIIa shows
the results performed with 12 threads each on a CPU, while
IIIb gives the outcomes on a graphics chips.

Library Forward (ms) Backward (ms)
TensorFlow 26 55

Torch 25 46
Caffe 121 203

Theano – –

TABLE IV: The result of Soumith Chintala’s benchmarks for
TensorFlow, Torch and Caffe (not Theano) on an AlexNet
ConvNet model [22], [23].

this was the recommended configuration for TensorFlow27.
The second source in our collection is the convnet-

benchmarks repository on GitHub by Soumith Chintala [22],
an artificial intelligence research engineer at Facebook. The
commit we reference28 is dated April 25, 2016. Chintala
provides an extensive set of benchmarks for a variety of
convolutional network models and includes many libraries,
including TensorFlow, Torch and Caffe in his measurements.
Theano is not present in all tests, so we will not review its
performance in this benchmark suite. The author’s hardware
configuration is a 6-core Intel Core i7-5930K CPU @ 3.50GHz
and an NVIDIA Titan X graphics chip running on Ubuntu
14.04. Inter alia, Chintala gives the forward and backward-
propagation time of TensorFlow, Torch and Caffe for the
AlexNet CNN model [23]. In these benchmarks, TensorFlow
performs second-best in both measures behind Torch, with
Caffe lagging relatively far behind. We reproduce the relevant
results in Table IV.

Lastly, we review the results of [5], published by the
Theano development team on May 9, 2016. Next to a set
of benchmarks for four popular CNN models, including the
aforementioned AlexNet architecture, the work also includes
results for an LSTM network operating on the Penn Treebank

27As of TensorFlow 0.8, released in April 2016 and thus after the publi-
cation of [20], TensorFlow now supports cuDNN v4, which promises better
performance on GPUs than cuDNN v3 and especially cuDNN v2.

28Commit sha1 hash: 84b5bb1785106e89691bc0625674b566a6c02147
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Fig. 9: The results of [5], comparing TensorFlow, Theano and
Torch on an LSTM model for the Penn Treebank dataset [24].
On the left the authors tested a small model with a single
hidden layer and 200 units; on the right they use two layers
with 650 units each.

dataset [24]. Their benchmarks measure words processed per
second for a small model consisting of a single 200-unit hidden
layer with sequence length 20, and a large model with two 650-
unit hidden layers and a sequence length of 50. In [5] also a
medium-sized model is tested, which we ignore for our review.
The authors state a hardware configuration consisting of an
NVIDIA Digits DevBox with 4 Titan X GPUs and an Intel
Core i7-5930K CPU. Moreover, they used cuDNN v4 for all
libraries included in their benchmarks, which are TensorFlow,
Torch and Theano. Results for Caffe are not given. In their
benchmarks, TensorFlow performs best among all three for
the small model, followed by Theano and then Torch. For
the large model, TensorFlow is placed second behind Theano,
while Torch remains in last place. Table 9 shows these results,
taken from [5].

When TensorFlow was first released, it performed poor on
benchmarks, causing disappointment within the deep learning
community. Since then, new releases of TensorFlow have
emerged, bringing with them improving results. This is re-
flected in our selection of works. The earliest of the three
sources, [20], published in late March 2016, ranks TensorFlow
consistently uncompetitive compared to Theano, Torch and
Caffe. Released almost two months later, [22] ranks Tensor-
Flow comparatively better. The latest work reviewed, [5], then
places TensorFlow in first or second place for LSTMs and also
other architectures discussed by the authors. We state that one
reason for this upward trend is that [5] uses TensorFlow with
cuDNN v4 for its GPU experiments, whereas [20] still used
cuDNN v2. While we predict that TensorFlow will improve its
performance on measurements similar to the ones discussed in
the future, we believe that these benchmarks — also today —
do not make full use of TensorFlow’s potential. The reason
for this is that all tests were performed on a single machine.
As we reviewed in depth in section III-B, TensorFlow was
built with massively parallel distributed computing in mind.
This ability is currently unique to TensorFlow among the
popular deep learning libraries and we estimate that it would



be advantageous to its performance, particularly for large-scale
models. We thus hope to see more benchmarks in literature in
the future, making better use of TensorFlow’s many-machine,
many-device capabilities.

VII. USE CASES OF TENSORFLOW TODAY

In this section, we investigate where TensorFlow is already
in use today. Given that TensorFlow was released only little
over 6 months ago as of this writing, its adoption in academia
and industry is not yet widespread. Migration from an existing
system based on some other library within small and large
organizations necessarily takes time and consideration, so this
is not unexpected. The one exception is, of course, Google,
which has already deployed TensorFlow for a variety of learn-
ing tasks [19], [25]–[28]. We begin with a review of selected
mentions of TensorFlow in literature. Then, we discuss where
and how TensorFlow is used in industry.

A. In Literature

The first noteworthy mention of TensorFlow is [29], pub-
lished by Szegedy, Ioffe and Vanhoucke of the Google Brain
Team in February 2016. In their work, the authors use
TensorFlow to improve on the Inception model [19], which
achieved best performance at the 2014 ImageNet classification
challenge. The authors report a 3.08% top-5 error on the
ImageNet test set.

In [25], Ramsundar et al. discuss massively “multitask
networks for drug discovery” in a joint collaboration work
between Stanford University and Google, published in early
2016. In this paper, the authors employ deep neural networks
developed with TensorFlow to perform virtual screening of
potential drug candidates. This is intended to aid pharmaceu-
tical companies and the scientific community in finding novel
medication and treatments for human diseases.

August and Ni apply TensorFlow to create recurrent neural
networks for optimizing dynamic decoupling, a technique for
suppressing errors in quantum memory [30]. With this, the
authors aim to preserve the coherence of quantum states,
which is one of the primary requirements for building universal
quantum computers.

Lastly, [31] investigates the use of sequence to sequence
neural translation models for natural language processing of
multilingual media sources. For this, Barzdins et al. use
TensorFlow with a sliding-window approach to character-level
English to Latvian translation of audio and video content. The
authors use this to segment TV and radio programs and cluster
individual stories.

B. In Industry

Adoption of TensorFlow in industry is currently limited only
to Google, at least to the extent that is publicly known. We
have found no evidence of any other small or large corporation
stating its use of TensorFlow. As mentioned, we link this to
TensorFlow’s late release. Moreover, it is obvious that many
companies would not make their machine learning methods

public even if they do use TensorFlow. For this reason, we
will review uses of TensorFlow only within Google, Inc.

Recently, Google has begun augmenting its core search ser-
vice and accompanying PageRank algorithm [32] with a sys-
tem called RankBrain [33], which makes use of TensorFlow.
RankBrain uses large-scale distributed deep neural networks
for search result ranking. According to [33], more than 15
percent of all search queries received on www.google.com
are new to Google’s system. RankBrain can suggest words
or phrases with similar meaning for unknown parts of such
queries.

Another area where Google applies deep learning with
TensorFlow is smart email replies [27]. Google has inves-
tigated and already deployed a feature whereby its email
service Inbox suggests possible replies to received email.
The system uses recurrent neural networks and in particular
LSTM modules for sequence-to-sequence learning and natural
language understanding. An encoder maps a corpus of text to
a “thought vector” while a decoder synthesizes syntactically
and semantically correct replies from it, of which a selection
is presented to the user.

In [26] it is reported how Google employs convolutional
neural networks for image recognition and automatic text
translation. As a feature integrated into its Google Translate
mobile app, text in a language foreign to the user is first
recognized, then translated and finally rendered on top of the
original image. In this way, for example, street signs can be
translated. [26] notes especially the challenge of deploying
such a system onto low-end phones with slow network con-
nections. For this, small neural networks were used and trained
to discover only the most essential information in order to
optimize available computational resources.

Lastly, we make note of the decision of Google DeepMind,
an AI division within Google, to move from Torch7 to
TensorFlow [28]. A related source, [17], states that DeepMind
made use of TensorFlow for its AlphaGo29 model, alongside
Google’s newly developed Tensor Processing Unit (TPU),
which was built to integrate especially well with TensorFlow.
In a correspondence of the authors of this paper with a member
of the Google DeepMind team, the following four reasons
were revealed to us as to why TensorFlow is advantageous to
DeepMind:

1) TensorFlow is included in the Google Cloud Platform30,
which enables easy replication of DeepMind’s research.

2) TensorFlow’s support for TPUs.
3) TensorFlow’s main interface, Python, is one of the core

languages at Google, which implies a much greater
internal tool set than for Lua.

4) The ability to run TensorFlow on many GPUs.

VIII. CONCLUSION

We have discussed TensorFlow, a novel open source deep
learning library based on computational graphs. Its ability

29https://deepmind.com/alpha-go
30https://cloud.google.com/compute/



to perform fast automatic gradient computation, its inherent
support for distributed computation and specialized hardware
as well as its powerful visualization tools make it a very
welcome addition to the field of machine learning. Its low-level
programming interface gives fine-grained control for neural net
construction, while abstraction libraries such as TFLearn allow
for rapid prototyping with TensorFlow. In the context of other
deep learning toolkits such as Theano or Torch, TensorFlow
adds new features and improves on others. Its performance
was inferior in comparison at first, but is improving with new
releases of the library.

We note that very little investigation has been done in
literature to evaluate TensorFlow’s qualities with respect to dis-
tributed execution. We esteem this one of its principle strong
points and thus encourage in-depth study by the academic
community in the future.

TensorFlow has gained great popularity and strong support
in the open-source community with many third-party contri-
butions, making Google’s move a sensible decision already.
We believe, however, that it will not only benefit its parent
company, but the greater scientific community as a whole;
opening new doors to faster, larger-scale artificial intelligence.

APPENDIXI

#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" A one-hidden-layer-MLP MNIST-classifier. """

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# Import the training data (MNIST)
from tensorflow.examples.tutorials.mnist import

input_data

import tensorflow as tf

# Possibly download and extract the MNIST data set.
# Retrieve the labels as one-hot-encoded vectors.
mnist = input_data.read_data_sets("/tmp/mnist",

one_hot=True)

# Create a new graph
graph = tf.Graph()

# Set our graph as the one to add nodes to
with graph.as_default():

# Placeholder for input examples (None =
variable dimension)

examples = tf.placeholder(shape=[None, 784],
dtype=tf.float32)

# Placeholder for labels
labels = tf.placeholder(shape=[None, 10],

dtype=tf.float32)

weights =
tf.Variable(tf.truncated_normal(shape=[784,
10], stddev=0.1))

bias = tf.Variable(tf.constant(0.1, shape=[10]))

# Apply an affine transformation to the input
features

logits = tf.matmul(examples, weights) + bias
estimates = tf.nn.softmax(logits)

# Compute the cross-entropy
cross_entropy = -tf.reduce_sum(labels *

tf.log(estimates),
reduction_indices=[1])

# And finally the loss
loss = tf.reduce_mean(cross_entropy)

# Create a gradient-descent optimizer that
minimizes the loss.

# We choose a learning rate of 0.01
optimizer =

tf.train.GradientDescentOptimizer(0.5).minimize(loss)

# Find the indices where the predictions were
correct

correct_predictions = tf.equal(
tf.argmax(estimates, dimension=1),
tf.argmax(labels, dimension=1))

accuracy =
tf.reduce_mean(tf.cast(correct_predictions,
tf.float32))

with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
for step in range(1001):

example_batch, label_batch =
mnist.train.next_batch(100)

feed_dict = {examples: example_batch, labels:
label_batch}

if step % 100 == 0:
_, loss_value, accuracy_value =

session.run(
[optimizer, loss, accuracy],
feed_dict=feed_dict

)
print("Loss at time {0}: {1}".format(step,

loss_value))
print("Accuracy at time {0}:

{1}".format(step, accuracy_value))
else:

optimizer.run(feed_dict)
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