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What you’ll learn about TensorFlow

How to:

● Build TensorFlow graphs
○ Inputs, variables, ops, tensors, sessions...

● Run/evaluate graphs, and how to train models

● Save and later load learned variables and models

● Use TensorBoard

● Intro to the distributed runtime
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What we’ll do from a ML perspective

(This is not really a ML tutorial.  But…)
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What we’ll do from a ML perspective

● Look at a simple “MNIST” example 

● Train a model that learns vector representations 

of words (“word2vec”)

○ Use the results to determine how words 
relate to each other

● (if time) Use the learned vector representations to 
initialize a Convolutional NN for text classification

● Run a distributed training session
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Agenda

● Welcome and logistics
● Setup
● Brief intro to machine learning
● What’s TensorFlow?
● Diving in deeper with word2vec
● Using word embeddings from word2vec with a CNN for 

text classification
● Using the TensorFlow distributed runtime with 

Kubernetes
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Setup -- install all the things!

●  Clone or download this repo: https://github.
com/amygdala/tensorflow-workshop

● Follow the installation instructions in that repo. 
You can run the workshop exercises in a Docker container, or 
alternately install and use a Conda virtual environment.

● If you’re having trouble getting the bandwidth to download the data 
files, don’t worry: most are for optional exercises.

8
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(Very) Brief intro to NN concepts



Google Cloud Platform 10

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

What is Machine Learning?

data algorithm insight
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data algorithm insight

What is Machine Learning?
“Field of study that gives computers the ability to learn without being 
explicitly programmed".
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data algorithm insight

What is Machine Learning?
But:  http://research.google.com/pubs/pub43146.html 
("Machine Learning: The High Interest Credit Card of Technical Debt")
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["this", "movie", "was", "great"]

["POS"]

Input  →

Hidden →

Output

(label) →
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["this", "movie", "was", "great"]

[.7]

Input  →

Hidden →

Output 

(score) →
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["cat"]

Input Hidden Output(label)

pixels(    )
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From: http://googleresearch.blogspot.com/2016_03_01_archive.html



Google Cloud Platform 17

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Related concepts / resources

● https://www.tensorflow.org/versions/r0.8/api_docs/python/nn.html 

● Introduction to Neural Networks: http://bit.ly/intro-to-ann

● Logistic versus Linear Regression: http://bit.ly/log-vs-lin

● Curse of Dimensionality: http://bit.ly/curse-of-dim

● A Few Useful Things to Know about Machine Learning: http://bit.

ly/useful-ml-intro
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What’s TensorFlow? 
(and why is it so great for this stuff?)
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Operates over tensors: n-dimensional arrays

Using a flow graph: data flow computation framework

TensorFlow

● Flexible, intuitive construction

● automatic differentiation

● Support for threads, queues, and asynchronous 

computation; distributed runtime

● Train on CPUs, GPUs

● Run wherever you like
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Operates over tensors: n-dimensional arrays

Using a flow graph: data flow computation framework

TensorFlow

● Flexible, intuitive construction

● automatic differentiation

● Support for threads, queues, and asynchronous 

computation; distributed runtime

● Train on CPUs, GPUs, ...and coming ‘soon’, TPUS...

● Run wherever you like https://cloudplatform.googleblog.
com/2016/05/Google-supercharges-
machine-learning-tasks-with-custom-chip.
html 
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(x,y,z,?,?,?,?,...)
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(x,y,z,?,?,?,?,...) => tensor
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Core TensorFlow data structures and concepts...

- Graph: A TensorFlow computation, represented as a 
dataflow graph.
- collection of ops that may be executed together as a 

group
- Operation: a graph node that performs computation on 

tensors
- Tensor: a handle to one of the outputs of an Operation

- provides a means of computing the value in a 
TensorFlow Session.
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Core TensorFlow data structures and concepts
- Constants
- Placeholders: must be fed with data on execution
- Variables: a modifiable tensor that lives in TensorFlow's 

graph of interacting operations.
- Session: encapsulates the environment in which 

Operation objects are executed, and Tensor objects are 
evaluated.
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Category

Element-wise math ops

Array ops

Matrix ops

Stateful ops

NN building blocks

Checkpointing ops

Queue & synch ops

Control flow ops

Operations
Examples

Add, Sub, Mul, Div, Exp, Log, Greater, Less…

Concat, Slice, Split, Constant, Rank, Shape…

MatMul, MatrixInverse, MatrixDeterminant…

Variable, Assign, AssignAdd...

SoftMax, Sigmoid, ReLU, Convolution2D…

Save, Restore

Enqueue, Dequeue, MutexAcquire…

Merge, Switch, Enter, Leave...
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(https://www.tensorflow.org/versions/r0.8/api_docs/python/nn.html,
https://www.tensorflow.org/versions/r0.8/api_docs/python/train.html,
 ...)
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Creating and running a TensorFlow 
graph
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Follow along at: https://github.com/amygdala/tensorflow-workshop/tree/master/workshop_sections/starter_tf_graph

import numpy as np
import tensorflow as tf

graph = tf.Graph()
m1 = np.array([[1.,2.], [3.,4.], [5.,6.], [7., 8.]], dtype=np.float32)

with graph.as_default():
  # Input data.
  m1_input = tf.placeholder(tf.float32, shape=[4,2])  

Create a TensorFlow graph
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Follow along at: https://github.com/amygdala/tensorflow-workshop/tree/master/workshop_sections/starter_tf_graph

  # Ops and variables pinned to the CPU because of missing GPU implementation
  with tf.device('/cpu:0'):

    m2 = tf.Variable(tf.random_uniform([2,3], -1.0, 1.0))
    m3 = tf.matmul(m1_input, m2)

    # This is an identity op with the side effect of printing data when evaluating.
    m3 = tf.Print(m3, [m3], message="m3 is: ")

    # Add variable initializer.
    init = tf.initialize_all_variables()

Create a TensorFlow graph
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Follow along at: https://github.com/amygdala/tensorflow-workshop/tree/master/workshop_sections/starter_tf_graph

with tf.Session(graph=graph) as session:
  # We must initialize all variables before we use them.
  init.run()
  print("Initialized")

  print("m2: {}".format(m2))
  print("eval m2: {}".format(m2.eval()))

  feed_dict = {m1_input: m1}

  result = session.run([m3], feed_dict=feed_dict)
  print("\nresult: {}\n".format(result))

Run the TensorFlow graph in a session
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Exercise:  more matrix operations

Workshop section: starter_tf_graph
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Follow along at: https://github.com/amygdala/tensorflow-
workshop/tree/master/workshop_sections/starter_tf_graph

On your own:

● Add m3 to itself

● Store the result in m4

● Return the results for both m3 and m4

Useful link: http://bit.ly/tf-math

Exercise: Modify the graph
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Related concepts / resources

● TensorFlow Graphs: http://bit.ly/tf-graphs

● TensorFlow Variables: http://bit.ly/tf-variables

● TensorFlow Math: http://bit.ly/tf-math
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Example: building a neural net in TensorFlow
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Computer Vision -- MNIST
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Computer Vision -- MNIST



Google Cloud Platform 37

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

import tensorflow as tf

X = tf.placeholder(tf.float32, [None, 28, 28, 1])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

init = tf.initialize_all_variables()

this will become the batch size, 100

28 x 28 grayscale images

Training = computing variables W and b

TensorFlow - initialization
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# model
Y = tf.nn.softmax(tf.matmul(tf.reshape(X, [-1, 784]), W) + b)
# placeholder for correct answers
Y_ = tf.placeholder(tf.float32, [None, 10])

# loss function
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),    
   reduction_indices=[1]))

# % of correct answers found in batch
is_correct = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))

“one-hot” encoded

“one-hot” decoding

flattening images
TensorFlow - success metrics
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optimizer = tf.train.GradientDescentOptimizer(0.003)
train_step = optimizer.minimize(cross_entropy)

learning rate

loss function

TensorFlow - training

Because TensorFlow knows the entire graph of your 
computations, it can automatically use the 
backpropagation algorithm to efficiently determine how 
your variables affect the cost you ask it to minimize. 
Then it can apply your choice of optimization algorithm to 
modify the variables and reduce the cost.
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sess = tf.Session()
sess.run(init)

for i in range(1000):
    # load batch of images and correct answers
    batch_X, batch_Y = mnist.train.next_batch(100)
    train_data={X: batch_X, Y_: batch_Y}

    # train
    sess.run(train_step, feed_dict=train_data)

    # success ?
    a,c = sess.run([accuracy, cross_entropy], feed_dict=train_data)

    # success on test data ?
    test_data={X: mnist.test.images, Y_: mnist.test.labels}
    a,c = sess.run([accuracy, cross_entropy], feed=test_data)

running a Tensorflow 
computation, feeding 
placeholders

do this 
every N 
iterations

TensorFlow - run!
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Common TF NN graph construction pattern:

- inference - Builds the part of the graph 
for running the network forward to make 
predictions.

- loss - Adds to the inference graph the 
ops required to generate loss/cost.

- training - add optimizer to minimize loss.
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import tensorflow as tf

X = tf.placeholder(tf.float32, [None, 28, 28, 1])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
init = tf.initialize_all_variables()

# model
Y=tf.nn.softmax(tf.matmul(tf.reshape(X,[-1, 784]), W) + b)

# placeholder for correct answers
Y_ = tf.placeholder(tf.float32, [None, 10])

# loss function
cross_entropy = -tf.reduce_sum(Y_ * tf.log(Y))

# % of correct answers found in batch
is_correct = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(is_correct,tf.float32))

optimizer = tf.train.GradientDescentOptimizer(0.003)
train_step = optimizer.minimize(cross_entropy)

sess = tf.Session()
sess.run(init)

for i in range(1000):
# load batch of images and correct answers
batch_X, batch_Y = mnist.train.next_batch(100)
train_data={X: batch_X, Y_: batch_Y}

# train
sess.run(train_step, feed_dict=train_data)

# success ? add code to print it
a,c = sess.run([accuracy, cross_entropy],

 feed=train_data)

# success on test data ?
test_data={X:mnist.test.images, Y_:mnist.test.labels}
a,c = sess.run([accuracy, cross_entropy],

 feed=test_data)

initialization

model

success metrics

training step

Run

TensorFlow - full python code
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Related concepts / resources

● Softmax Function: http://bit.ly/softmax

● MNIST: http://bit.ly/mnist

● Loss Function: http://bit.ly/loss-fn

● Gradient Descent Overview: http://bit.ly/gradient-descent

● Training, Testing, & Cross Validation: http://bit.ly/ml-eval
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Diving in deeper with word2vec:
Learning vector representations of 
words
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- A model for learning vector representations of words -- word embeddings 
(feature vectors for words in supplied text).

- Vector space models address an NLP data sparsity problem encountered 
when words are discrete IDs

- Map similar words to nearby points.

Two categories of approaches:

● count-based (e.g. LSA)

● Predictive: try to predict a word from its neighbors using learned 
embeddings (e.g. word2vec & other neural probabilistic language models)

NIPS paper: Mikolov et al.: http://bit.ly/word2vec-paper

What is word2vec?
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Two flavors of word2vec

● Continuous Bag-of-Words (COBW)

■ Predicts target words from 
source context words

● Skip-Gram

■ Predicts source context 
words from target

https://www.tensorflow.org/versions/r0.8/images/nce-nplm.png
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Making word2vec scalable

● Instead of a full probabilistic model…
Use logistic regression to 
discriminate target words from 
imaginary (noise) words.

● Noise-contrastive estimation (NCE) 
loss
○ tf.nn.nce_loss()
○ Scales with number of noise 

words
https://www.tensorflow.org/versions/r0.8/images/nce-nplm.png
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Context/target pairs, window-size of 1 in both directions:

the quick brown fox jumped over the lazy dog ... → 

([the, brown], quick), ([quick, fox], brown), ([brown, 
jumped], fox), …

Skip-Gram model
(predict source context-words from target words)
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Context/target pairs, window-size of 1 in both directions:

the quick brown fox jumped over the lazy dog ... → 

([the, brown], quick), ([quick, fox], brown), ([brown, 
jumped], fox), …

Input/output pairs:

(quick, the), (quick, brown), (brown, quick), (brown, 
fox), …

Typically optimize with stochastic gradient descent (SGD) using minibatches

Skip-gram model
(predict source context-words from target words)
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https://www.tensorflow.org/versions/r0.8/images/linear-relationships.png
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model.nearby([b'cat'])

b'cat'               1.0000
b'cats'              0.6077
b'dog'               0.6030
b'pet'               0.5704
b'dogs'              0.5548
b'kitten'            0.5310
b'toxoplasma'        0.5234
b'kitty'             0.4753
b'avner'             0.4741
b'rat'               0.4641
b'pets'              0.4574
b'rabbit'            0.4501
b'animal'            0.4472
b'puppy'             0.4469
b'veterinarian'      0.4435
b'raccoon'           0.4330
b'squirrel'          0.4310
...

52

model.analogy(b'cat', 
b'kitten', b'dog')
Out[1]: b'puppy'
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Exercise: word2vec, and introducing
TensorBoard

Workshop section: intro_word2vec
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  # Input data.

  train_inputs = tf.placeholder(tf.int32, shape=[batch_size])

  train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

  valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

  # Ops and variables pinned to the CPU because of missing GPU implementation

  with tf.device('/cpu:0'):

    # Look up embeddings for inputs.

    embeddings = tf.Variable(

        tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))

    embed = tf.nn.embedding_lookup(embeddings, train_inputs)

    # Construct the variables for the NCE loss

    nce_weights = tf.Variable(

        tf.truncated_normal([vocabulary_size, embedding_size],

                            stddev=1.0 / math.sqrt(embedding_size)))

    nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
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  # Compute the average NCE loss for the batch.

  # tf.nce_loss automatically draws a new sample of the negative labels each

  # time we evaluate the loss.

  loss = tf.reduce_mean(

      tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,

                     num_sampled, vocabulary_size))

  # Construct the SGD optimizer using a learning rate of 1.0.

  optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

(noise-contrastive 
estimation loss: https:
//www.tensorflow.
org/versions/r0.
8/api_docs/python/nn.
html#nce_loss )
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with tf.Session(graph=graph) as session:

  ...

  for step in xrange(num_steps):

    batch_inputs, batch_labels = generate_batch(

        batch_size, num_skips, skip_window)

    feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}

    # We perform one update step by evaluating the optimizer op (including it

    # in the list of returned values for session.run()

    _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
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Exercise: change word2vec to 
additionally output ‘nearby’ info for a 
specific word

Workshop section: intro_word2vec
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Nearest to b'government': 
b'governments', b'leadership', b'regime', 
b'crown', b'rule', b'leaders', b'parliament', 
b'elections',

60
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Related concepts / resources

● Word Embeddings: http://bit.ly/word-embeddings

● word2vec Tutorial: http://bit.ly/tensorflow-word2vec

● Continuous Bag of Words vs Skip-Gram: http://bit.

ly/cbow-vs-sg
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Back to those word embeddings from 
word2vec…

Can we use them for analogies?
Synonyms?



Google Cloud Platform 63

Demo: Accessing the learned word embeddings 
from (an optimized) word2vec

Workshop section: word2vec_optimized
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Using a Convolutional NN for Text Classification

and word embeddings
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Convolution with 3×3 Filter. Source: http://deeplearning.stanford.edu/wiki/index.
php/Feature_extraction_using_convolution
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Image from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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Image from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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Max pooling in CNN. Source: http://cs231n.github.io/convolutional-networks/#pool, via http://www.wildml.com/2015/11/understanding-
convolutional-neural-networks-for-nlp/ 
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Image from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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Image from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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Image from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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From: Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. http://arxiv.org/abs/1408.5882 
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Related concepts / resources

● Convolutional Neural Networks: http://bit.ly/cnn-

tutorial

● Document Classification: http://bit.ly/doc-class

● Rectifier: http://bit.ly/rectifier-ann

● MNIST: http://bit.ly/mnist
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Exercise: Using a CNN for text 
classification (part I)

Workshop section: 
cnn_text_classification
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From: Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. http://arxiv.org/abs/1408.5882 
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Exercise: Using word embeddings from 
word2vec with the text classification 
CNN (part 2)

Workshop section: cnn_text_classification
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Checkpointing and reloading models

Workshop section: cnn_text_classification
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Using the TensorFlow distributed 
runtime with Kubernetes
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Exercise/demo: Distributed word2vec 
on a Kubernetes cluster

Workshop section: 
distributed_tensorflow
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Kubernetes as a Tensorflow Cluster Manager
Jupyter Ingress :80 Tensorboard Ingress :6006

 Jupyter

gRPC :8080

jupyter-server tensorboard-server 

tensorflow-worker 
(master)

ps-0

tensorflow
-worker gRPC :8080

ps-1

tensorflow
-worker gRPC :8080

worker-0

tensorflow
-worker 

gRPC :8080

worker-1

tensorflow
-worker 

gRPC :8080

worker-14

tensorflow
-worker 

gRPC :8080
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Model Parallelism: Full Graph Replication

● Similar code runs on each worker and workers use 
flags to determine their role in the cluster:

server = tf.train.Server(cluster_def, job_name=this_job_name, 

task_index=this_task_index)

if this_job_name == 'ps':

    server.join()

elif this_job_name=='worker':

// cont’d
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Model Parallelism: Full Graph Replication

● Copies of each variable and op are deterministically 
assigned to parameter servers and worker

    with tf.device(tf.train.replica_device_setter(

        worker_device="/job:worker/task:{}".format(this_task_index),

        cluster=cluster_def)):

        // Build the model

        global_step = tf.Variable(0)

        train_op = tf.train.AdagradOptimizer(0.01).minimize(

            loss, global_step=global_step)
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Model Parallelism: Full Graph Replication

● Workers coordinate once-per-cluster tasks using a 
Supervisor and train independently

    sv = tf.train.Supervisor(

             is_chief = (this_task_index==0),

             // training, summary and initialization ops))

    with sv.managed_session(server.target) as session:

         step = 0

        while not sv.should_stop() and step < 1000000:

            # Run a training step asynchronously.

             _, step = sess.run([train_op, global_step])
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Model Parallelism: Sub-Graph Replication

with tf.Graph().as_default():
    losses = []

    for worker in loss_workers:

  with tf.device(worker):

    // Computationally expensive model section

    // e.g. loss calculation

    losses.append(loss)

● Can pin operations specifically to individual nodes in 
the cluster
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Model Parallelism: Sub-Graph Replication

with tf.device(master):

losses_avg = tf.add_n(losses) / len(workers)

train_op = tf.train.AdagradOptimizer(0.01).minimize(

        losses_avg, global_step=global_step)

    

    with tf.Session('grpc://master.address:8080') as session:

        step = 0

        while step < num_steps:

            _, step = sess.run([train_op, global_step])

● Can use a single synchronized training step, averaging 
losses from multiple workers
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Data Parallelism: Asynchronous

train_op = tf.train.AdagradOptimizer(1.0, use_locking=False).minimize(
loss, global_step=gs)
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Data Parallelism: Synchronous
for worker in workers:

   with tf.device(worker):

// expensive computation, e.g. loss

       losses.append(loss)

with tf.device(master):
   avg_loss = tf.add_n(losses) / len(workers)
   tf.train.AdagradOptimizer(1.0).minimize(avg_loss, global_step=gs)
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Summary

Model Parallelism

Sub-Graph ● Allows fine grained 
application of parallelism 
to slow graph 
components

● Larger more complex 
graph

Full Graph ● Code is more similar to 
single process models

● Not necessarily as 
performant (large 
models)

Data Parallelism

Synchronous ● Prevents workers from 
“Falling behind”

● Workers progress at the 
speed of the slowest 
worker

Asynchronous ● Workers advance as fast 
as they can

● Can result in runs that 
aren’t reproducible or 
difficult to debug behavior 
(large models)
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Demo
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Related concepts / resources

● Distributed TensorFlow: http://bit.ly/tensorflow-k8s

● Kubernetes: http://bit.ly/k8s-for-users
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Wrap up
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Where to go for more

● TensorFlow whitepaper: http://bit.ly/tensorflow-wp

● Deep Learning Udacity course: http://bit.ly/udacity-tensorflow

● Deep MNIST for Experts (TensorFlow): http://bit.ly/expert-mnist

● Performing Image Recognition with TensorFlow: http://bit.ly/img-rec

● Neural Networks Demystified (video series): http://bit.ly/nn-demystified

● Gentle Guide to Machine Learning: http://bit.ly/gentle-ml

● TensorFlow tutorials: http://bit.ly/tensorflow-tutorials

● TensorFlow models: http://bit.ly/tensorflow-models
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Thank you!
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end


