
Amy Unruh, Eli Bixby, Julia Ferraioli

Diving into machine learning
through TensorFlow

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Slides: http://bit.ly/tf-workshop-slides
GitHub: https://github.com/amygdala/tensorflow-workshop

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Amy Eli Julia

Your guides

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

What you’ll learn about TensorFlow

How to:

● Build TensorFlow graphs
○ Inputs, variables, ops, tensors, sessions...

● Run/evaluate graphs, and how to train models

● Save and later load learned variables and models

● Use TensorBoard

● Intro to the distributed runtime

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

What we’ll do from a ML perspective

(This is not really a ML tutorial. But…)

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

What we’ll do from a ML perspective

● Look at a simple “MNIST” example

● Train a model that learns vector representations

of words (“word2vec”)

○ Use the results to determine how words
relate to each other

● (if time) Use the learned vector representations to
initialize a Convolutional NN for text classification

● Run a distributed training session

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Agenda

● Welcome and logistics
● Setup
● Brief intro to machine learning
● What’s TensorFlow?
● Diving in deeper with word2vec
● Using word embeddings from word2vec with a CNN for

text classification
● Using the TensorFlow distributed runtime with

Kubernetes

Google Cloud Platform 8

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Setup -- install all the things!

● Clone or download this repo: https://github.
com/amygdala/tensorflow-workshop

● Follow the installation instructions in that repo.
You can run the workshop exercises in a Docker container, or
alternately install and use a Conda virtual environment.

● If you’re having trouble getting the bandwidth to download the data
files, don’t worry: most are for optional exercises.

8

Google Cloud Platform 9

(Very) Brief intro to NN concepts

Google Cloud Platform 10

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

What is Machine Learning?

data algorithm insight

Google Cloud Platform 11

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

data algorithm insight

What is Machine Learning?
“Field of study that gives computers the ability to learn without being
explicitly programmed".

Google Cloud Platform 12

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

data algorithm insight

What is Machine Learning?
But: http://research.google.com/pubs/pub43146.html
("Machine Learning: The High Interest Credit Card of Technical Debt")

Google Cloud Platform 13

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

["this", "movie", "was", "great"]

["POS"]

Input →

Hidden →

Output

(label) →

Google Cloud Platform 14

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

["this", "movie", "was", "great"]

[.7]

Input →

Hidden →

Output

(score) →

Google Cloud Platform 15

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

["cat"]

Input Hidden Output(label)

pixels()

Google Cloud Platform 16

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

From: http://googleresearch.blogspot.com/2016_03_01_archive.html

Google Cloud Platform 17

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Related concepts / resources

● https://www.tensorflow.org/versions/r0.8/api_docs/python/nn.html

● Introduction to Neural Networks: http://bit.ly/intro-to-ann

● Logistic versus Linear Regression: http://bit.ly/log-vs-lin

● Curse of Dimensionality: http://bit.ly/curse-of-dim

● A Few Useful Things to Know about Machine Learning: http://bit.

ly/useful-ml-intro

Google Cloud Platform 18

What’s TensorFlow?
(and why is it so great for this stuff?)

19

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Operates over tensors: n-dimensional arrays

Using a flow graph: data flow computation framework

TensorFlow

● Flexible, intuitive construction

● automatic differentiation

● Support for threads, queues, and asynchronous

computation; distributed runtime

● Train on CPUs, GPUs

● Run wherever you like

20

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Operates over tensors: n-dimensional arrays

Using a flow graph: data flow computation framework

TensorFlow

● Flexible, intuitive construction

● automatic differentiation

● Support for threads, queues, and asynchronous

computation; distributed runtime

● Train on CPUs, GPUs, ...and coming ‘soon’, TPUS...

● Run wherever you like https://cloudplatform.googleblog.
com/2016/05/Google-supercharges-
machine-learning-tasks-with-custom-chip.
html

Google Cloud Platform 21

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

(x,y,z,?,?,?,?,...)

Google Cloud Platform 22

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

(x,y,z,?,?,?,?,...) => tensor

Google Cloud Platform 23

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Core TensorFlow data structures and concepts...

- Graph: A TensorFlow computation, represented as a
dataflow graph.
- collection of ops that may be executed together as a

group
- Operation: a graph node that performs computation on

tensors
- Tensor: a handle to one of the outputs of an Operation

- provides a means of computing the value in a
TensorFlow Session.

Google Cloud Platform 24

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Core TensorFlow data structures and concepts
- Constants
- Placeholders: must be fed with data on execution
- Variables: a modifiable tensor that lives in TensorFlow's

graph of interacting operations.
- Session: encapsulates the environment in which

Operation objects are executed, and Tensor objects are
evaluated.

Google Cloud Platform 25

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Category

Element-wise math ops

Array ops

Matrix ops

Stateful ops

NN building blocks

Checkpointing ops

Queue & synch ops

Control flow ops

Operations
Examples

Add, Sub, Mul, Div, Exp, Log, Greater, Less…

Concat, Slice, Split, Constant, Rank, Shape…

MatMul, MatrixInverse, MatrixDeterminant…

Variable, Assign, AssignAdd...

SoftMax, Sigmoid, ReLU, Convolution2D…

Save, Restore

Enqueue, Dequeue, MutexAcquire…

Merge, Switch, Enter, Leave...

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

(https://www.tensorflow.org/versions/r0.8/api_docs/python/nn.html,
https://www.tensorflow.org/versions/r0.8/api_docs/python/train.html,
 ...)

Google Cloud Platform 27

Creating and running a TensorFlow
graph

Google Cloud Platform 28

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Follow along at: https://github.com/amygdala/tensorflow-workshop/tree/master/workshop_sections/starter_tf_graph

import numpy as np
import tensorflow as tf

graph = tf.Graph()
m1 = np.array([[1.,2.], [3.,4.], [5.,6.], [7., 8.]], dtype=np.float32)

with graph.as_default():
 # Input data.
 m1_input = tf.placeholder(tf.float32, shape=[4,2])

Create a TensorFlow graph

Google Cloud Platform 29

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Follow along at: https://github.com/amygdala/tensorflow-workshop/tree/master/workshop_sections/starter_tf_graph

 # Ops and variables pinned to the CPU because of missing GPU implementation
 with tf.device('/cpu:0'):

 m2 = tf.Variable(tf.random_uniform([2,3], -1.0, 1.0))
 m3 = tf.matmul(m1_input, m2)

 # This is an identity op with the side effect of printing data when evaluating.
 m3 = tf.Print(m3, [m3], message="m3 is: ")

 # Add variable initializer.
 init = tf.initialize_all_variables()

Create a TensorFlow graph

Google Cloud Platform 30

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Follow along at: https://github.com/amygdala/tensorflow-workshop/tree/master/workshop_sections/starter_tf_graph

with tf.Session(graph=graph) as session:
 # We must initialize all variables before we use them.
 init.run()
 print("Initialized")

 print("m2: {}".format(m2))
 print("eval m2: {}".format(m2.eval()))

 feed_dict = {m1_input: m1}

 result = session.run([m3], feed_dict=feed_dict)
 print("\nresult: {}\n".format(result))

Run the TensorFlow graph in a session

Google Cloud Platform 31

Exercise: more matrix operations

Workshop section: starter_tf_graph

Google Cloud Platform 32

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Follow along at: https://github.com/amygdala/tensorflow-
workshop/tree/master/workshop_sections/starter_tf_graph

On your own:

● Add m3 to itself

● Store the result in m4

● Return the results for both m3 and m4

Useful link: http://bit.ly/tf-math

Exercise: Modify the graph

Google Cloud Platform 33

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Related concepts / resources

● TensorFlow Graphs: http://bit.ly/tf-graphs

● TensorFlow Variables: http://bit.ly/tf-variables

● TensorFlow Math: http://bit.ly/tf-math

Google Cloud Platform 34

Example: building a neural net in TensorFlow

Google Cloud Platform 35

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Computer Vision -- MNIST

Google Cloud Platform 36

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Computer Vision -- MNIST

Google Cloud Platform 37

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

import tensorflow as tf

X = tf.placeholder(tf.float32, [None, 28, 28, 1])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

init = tf.initialize_all_variables()

this will become the batch size, 100

28 x 28 grayscale images

Training = computing variables W and b

TensorFlow - initialization

Google Cloud Platform 38

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

model
Y = tf.nn.softmax(tf.matmul(tf.reshape(X, [-1, 784]), W) + b)
placeholder for correct answers
Y_ = tf.placeholder(tf.float32, [None, 10])

loss function
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),
 reduction_indices=[1]))

% of correct answers found in batch
is_correct = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))

“one-hot” encoded

“one-hot” decoding

flattening images
TensorFlow - success metrics

Google Cloud Platform 39

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Google Cloud Platform 40

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

optimizer = tf.train.GradientDescentOptimizer(0.003)
train_step = optimizer.minimize(cross_entropy)

learning rate

loss function

TensorFlow - training

Because TensorFlow knows the entire graph of your
computations, it can automatically use the
backpropagation algorithm to efficiently determine how
your variables affect the cost you ask it to minimize.
Then it can apply your choice of optimization algorithm to
modify the variables and reduce the cost.

Google Cloud Platform 41

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

sess = tf.Session()
sess.run(init)

for i in range(1000):
 # load batch of images and correct answers
 batch_X, batch_Y = mnist.train.next_batch(100)
 train_data={X: batch_X, Y_: batch_Y}

 # train
 sess.run(train_step, feed_dict=train_data)

 # success ?
 a,c = sess.run([accuracy, cross_entropy], feed_dict=train_data)

 # success on test data ?
 test_data={X: mnist.test.images, Y_: mnist.test.labels}
 a,c = sess.run([accuracy, cross_entropy], feed=test_data)

running a Tensorflow
computation, feeding
placeholders

do this
every N
iterations

TensorFlow - run!

Google Cloud Platform 42

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Common TF NN graph construction pattern:

- inference - Builds the part of the graph
for running the network forward to make
predictions.

- loss - Adds to the inference graph the
ops required to generate loss/cost.

- training - add optimizer to minimize loss.

Google Cloud Platform 43

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

import tensorflow as tf

X = tf.placeholder(tf.float32, [None, 28, 28, 1])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
init = tf.initialize_all_variables()

model
Y=tf.nn.softmax(tf.matmul(tf.reshape(X,[-1, 784]), W) + b)

placeholder for correct answers
Y_ = tf.placeholder(tf.float32, [None, 10])

loss function
cross_entropy = -tf.reduce_sum(Y_ * tf.log(Y))

% of correct answers found in batch
is_correct = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(is_correct,tf.float32))

optimizer = tf.train.GradientDescentOptimizer(0.003)
train_step = optimizer.minimize(cross_entropy)

sess = tf.Session()
sess.run(init)

for i in range(1000):
load batch of images and correct answers
batch_X, batch_Y = mnist.train.next_batch(100)
train_data={X: batch_X, Y_: batch_Y}

train
sess.run(train_step, feed_dict=train_data)

success ? add code to print it
a,c = sess.run([accuracy, cross_entropy],

 feed=train_data)

success on test data ?
test_data={X:mnist.test.images, Y_:mnist.test.labels}
a,c = sess.run([accuracy, cross_entropy],

 feed=test_data)

initialization

model

success metrics

training step

Run

TensorFlow - full python code

Google Cloud Platform 44

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Related concepts / resources

● Softmax Function: http://bit.ly/softmax

● MNIST: http://bit.ly/mnist

● Loss Function: http://bit.ly/loss-fn

● Gradient Descent Overview: http://bit.ly/gradient-descent

● Training, Testing, & Cross Validation: http://bit.ly/ml-eval

Google Cloud Platform 45

Diving in deeper with word2vec:
Learning vector representations of
words

46

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

- A model for learning vector representations of words -- word embeddings
(feature vectors for words in supplied text).

- Vector space models address an NLP data sparsity problem encountered
when words are discrete IDs

- Map similar words to nearby points.

Two categories of approaches:

● count-based (e.g. LSA)

● Predictive: try to predict a word from its neighbors using learned
embeddings (e.g. word2vec & other neural probabilistic language models)

NIPS paper: Mikolov et al.: http://bit.ly/word2vec-paper

What is word2vec?

47

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Two flavors of word2vec

● Continuous Bag-of-Words (COBW)

■ Predicts target words from
source context words

● Skip-Gram

■ Predicts source context
words from target

https://www.tensorflow.org/versions/r0.8/images/nce-nplm.png

48

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Making word2vec scalable

● Instead of a full probabilistic model…
Use logistic regression to
discriminate target words from
imaginary (noise) words.

● Noise-contrastive estimation (NCE)
loss
○ tf.nn.nce_loss()
○ Scales with number of noise

words
https://www.tensorflow.org/versions/r0.8/images/nce-nplm.png

49

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Context/target pairs, window-size of 1 in both directions:

the quick brown fox jumped over the lazy dog ... →

([the, brown], quick), ([quick, fox], brown), ([brown,
jumped], fox), …

Skip-Gram model
(predict source context-words from target words)

50

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Context/target pairs, window-size of 1 in both directions:

the quick brown fox jumped over the lazy dog ... →

([the, brown], quick), ([quick, fox], brown), ([brown,
jumped], fox), …

Input/output pairs:

(quick, the), (quick, brown), (brown, quick), (brown,
fox), …

Typically optimize with stochastic gradient descent (SGD) using minibatches

Skip-gram model
(predict source context-words from target words)

51

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop
https://www.tensorflow.org/versions/r0.8/images/linear-relationships.png

Google Cloud Platform 52

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

model.nearby([b'cat'])

b'cat' 1.0000
b'cats' 0.6077
b'dog' 0.6030
b'pet' 0.5704
b'dogs' 0.5548
b'kitten' 0.5310
b'toxoplasma' 0.5234
b'kitty' 0.4753
b'avner' 0.4741
b'rat' 0.4641
b'pets' 0.4574
b'rabbit' 0.4501
b'animal' 0.4472
b'puppy' 0.4469
b'veterinarian' 0.4435
b'raccoon' 0.4330
b'squirrel' 0.4310
...

52

model.analogy(b'cat',
b'kitten', b'dog')
Out[1]: b'puppy'

Google Cloud Platform 53

Exercise: word2vec, and introducing
TensorBoard

Workshop section: intro_word2vec

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

 # Input data.

 train_inputs = tf.placeholder(tf.int32, shape=[batch_size])

 train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

 valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

 # Ops and variables pinned to the CPU because of missing GPU implementation

 with tf.device('/cpu:0'):

 # Look up embeddings for inputs.

 embeddings = tf.Variable(

 tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))

 embed = tf.nn.embedding_lookup(embeddings, train_inputs)

 # Construct the variables for the NCE loss

 nce_weights = tf.Variable(

 tf.truncated_normal([vocabulary_size, embedding_size],

 stddev=1.0 / math.sqrt(embedding_size)))

 nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

 # Compute the average NCE loss for the batch.

 # tf.nce_loss automatically draws a new sample of the negative labels each

 # time we evaluate the loss.

 loss = tf.reduce_mean(

 tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,

 num_sampled, vocabulary_size))

 # Construct the SGD optimizer using a learning rate of 1.0.

 optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

(noise-contrastive
estimation loss: https:
//www.tensorflow.
org/versions/r0.
8/api_docs/python/nn.
html#nce_loss)

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

with tf.Session(graph=graph) as session:

 ...

 for step in xrange(num_steps):

 batch_inputs, batch_labels = generate_batch(

 batch_size, num_skips, skip_window)

 feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}

 # We perform one update step by evaluating the optimizer op (including it

 # in the list of returned values for session.run()

 _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Google Cloud Platform 59

Exercise: change word2vec to
additionally output ‘nearby’ info for a
specific word

Workshop section: intro_word2vec

Google Cloud Platform 60

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Nearest to b'government':
b'governments', b'leadership', b'regime',
b'crown', b'rule', b'leaders', b'parliament',
b'elections',

60

Google Cloud Platform 61

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Related concepts / resources

● Word Embeddings: http://bit.ly/word-embeddings

● word2vec Tutorial: http://bit.ly/tensorflow-word2vec

● Continuous Bag of Words vs Skip-Gram: http://bit.

ly/cbow-vs-sg

Google Cloud Platform 62

Back to those word embeddings from
word2vec…

Can we use them for analogies?
Synonyms?

Google Cloud Platform 63

Demo: Accessing the learned word embeddings
from (an optimized) word2vec

Workshop section: word2vec_optimized

Google Cloud Platform 64

Using a Convolutional NN for Text Classification

and word embeddings

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Convolution with 3×3 Filter. Source: http://deeplearning.stanford.edu/wiki/index.
php/Feature_extraction_using_convolution

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Image from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Image from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Max pooling in CNN. Source: http://cs231n.github.io/convolutional-networks/#pool, via http://www.wildml.com/2015/11/understanding-
convolutional-neural-networks-for-nlp/

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop
Image from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop
Image from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Image from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

From: Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. http://arxiv.org/abs/1408.5882

Google Cloud Platform 73

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Related concepts / resources

● Convolutional Neural Networks: http://bit.ly/cnn-

tutorial

● Document Classification: http://bit.ly/doc-class

● Rectifier: http://bit.ly/rectifier-ann

● MNIST: http://bit.ly/mnist

Google Cloud Platform 74

Exercise: Using a CNN for text
classification (part I)

Workshop section:
cnn_text_classification

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

From: Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. http://arxiv.org/abs/1408.5882

Google Cloud Platform 76

Exercise: Using word embeddings from
word2vec with the text classification
CNN (part 2)

Workshop section: cnn_text_classification

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Google Cloud Platform 78

Checkpointing and reloading models

Workshop section: cnn_text_classification

Google Cloud Platform 79

Using the TensorFlow distributed
runtime with Kubernetes

Google Cloud Platform 80

Exercise/demo: Distributed word2vec
on a Kubernetes cluster

Workshop section:
distributed_tensorflow

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Kubernetes as a Tensorflow Cluster Manager
Jupyter Ingress :80 Tensorboard Ingress :6006

 Jupyter

gRPC :8080

jupyter-server tensorboard-server

tensorflow-worker
(master)

ps-0

tensorflow
-worker gRPC :8080

ps-1

tensorflow
-worker gRPC :8080

worker-0

tensorflow
-worker

gRPC :8080

worker-1

tensorflow
-worker

gRPC :8080

worker-14

tensorflow
-worker

gRPC :8080

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Model Parallelism: Full Graph Replication

● Similar code runs on each worker and workers use
flags to determine their role in the cluster:

server = tf.train.Server(cluster_def, job_name=this_job_name,

task_index=this_task_index)

if this_job_name == 'ps':

 server.join()

elif this_job_name=='worker':

// cont’d

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Model Parallelism: Full Graph Replication

● Copies of each variable and op are deterministically
assigned to parameter servers and worker

 with tf.device(tf.train.replica_device_setter(

 worker_device="/job:worker/task:{}".format(this_task_index),

 cluster=cluster_def)):

 // Build the model

 global_step = tf.Variable(0)

 train_op = tf.train.AdagradOptimizer(0.01).minimize(

 loss, global_step=global_step)

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Model Parallelism: Full Graph Replication

● Workers coordinate once-per-cluster tasks using a
Supervisor and train independently

 sv = tf.train.Supervisor(

 is_chief = (this_task_index==0),

 // training, summary and initialization ops))

 with sv.managed_session(server.target) as session:

 step = 0

 while not sv.should_stop() and step < 1000000:

 # Run a training step asynchronously.

 _, step = sess.run([train_op, global_step])

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Model Parallelism: Sub-Graph Replication

with tf.Graph().as_default():
 losses = []

 for worker in loss_workers:

 with tf.device(worker):

 // Computationally expensive model section

 // e.g. loss calculation

 losses.append(loss)

● Can pin operations specifically to individual nodes in
the cluster

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Model Parallelism: Sub-Graph Replication

with tf.device(master):

losses_avg = tf.add_n(losses) / len(workers)

train_op = tf.train.AdagradOptimizer(0.01).minimize(

 losses_avg, global_step=global_step)

 with tf.Session('grpc://master.address:8080') as session:

 step = 0

 while step < num_steps:

 _, step = sess.run([train_op, global_step])

● Can use a single synchronized training step, averaging
losses from multiple workers

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Data Parallelism: Asynchronous

train_op = tf.train.AdagradOptimizer(1.0, use_locking=False).minimize(
loss, global_step=gs)

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Data Parallelism: Synchronous
for worker in workers:

 with tf.device(worker):

// expensive computation, e.g. loss

 losses.append(loss)

with tf.device(master):
 avg_loss = tf.add_n(losses) / len(workers)
 tf.train.AdagradOptimizer(1.0).minimize(avg_loss, global_step=gs)

bit.ly/tensorflow-at-pycon bit.ly/tensorflow-workshop

Summary

Model Parallelism

Sub-Graph ● Allows fine grained
application of parallelism
to slow graph
components

● Larger more complex
graph

Full Graph ● Code is more similar to
single process models

● Not necessarily as
performant (large
models)

Data Parallelism

Synchronous ● Prevents workers from
“Falling behind”

● Workers progress at the
speed of the slowest
worker

Asynchronous ● Workers advance as fast
as they can

● Can result in runs that
aren’t reproducible or
difficult to debug behavior
(large models)

Google Cloud Platform 90

Demo

Google Cloud Platform 91

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Related concepts / resources

● Distributed TensorFlow: http://bit.ly/tensorflow-k8s

● Kubernetes: http://bit.ly/k8s-for-users

Google Cloud Platform 92

Wrap up

Google Cloud Platform 93

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

Where to go for more

● TensorFlow whitepaper: http://bit.ly/tensorflow-wp

● Deep Learning Udacity course: http://bit.ly/udacity-tensorflow

● Deep MNIST for Experts (TensorFlow): http://bit.ly/expert-mnist

● Performing Image Recognition with TensorFlow: http://bit.ly/img-rec

● Neural Networks Demystified (video series): http://bit.ly/nn-demystified

● Gentle Guide to Machine Learning: http://bit.ly/gentle-ml

● TensorFlow tutorials: http://bit.ly/tensorflow-tutorials

● TensorFlow models: http://bit.ly/tensorflow-models

Google Cloud Platform 94

Thank you!

http://bit.ly/tf-workshop-slides bit.ly/tensorflow-workshop

end

