ICML 2017论文精选#1 用影响函数(Influence Functions)理解机器学习中的黑盒预测(Best paper award 最佳论文奖@斯坦福)

无论是机器学习还是人类学习,似乎一个永恒的问题摆在外部指导者的面前:“我究竟做错了什么使得它(他)的学习效果不理想?” — David 9

之前我们提到过,端到端学习是未来机器学习的重要趋势。

可以想象在不久的将来,一切机器学习模型可以精妙到酷似一个“黑盒”,大多数情况下,用户不再需要辛苦地调整超参数,选择损失函数,尝试各种模型架构,而是像老师指导学生一样,越来越关注这样一个问题:我究竟做错了什么使得它的学习效果不理想?是我的训练数据哪里给的不对?

今年来自斯坦福的ICML最佳论文正是围绕这一主题,用影响函数(influence functions)来理解机器模型这一“黑盒”的行为,洞察每个训练样本对模型预测结果的影响。

文章开篇结合影响函数给出单个训练样本 z 对所有模型参数 θ 的影响程度 的计算:

其中 ε 是样本 z 相对于其他训练样本的权重, 如果有 n 个样本就可以理解为 1/n 。

Hessian二阶偏导矩阵, 蕴含所有训练样本(总共 n 个)对模型参数θ 的影响情况.

而梯度

蕴含单个训练样本 z模型参数 θ 的影响大小. 继续阅读ICML 2017论文精选#1 用影响函数(Influence Functions)理解机器学习中的黑盒预测(Best paper award 最佳论文奖@斯坦福)

CVPR 2017论文精选#3 不可思议的研究: EEG脑电波深度学习在视觉分类中的应用

大脑是天然的特征提取器, 如果不能理解它, 或许可以模拟它, 它蕴含的泛化能力真是惊人 — David 9

许多人相信VR或AR硬件可能是人机交互的未来,  这些欺骗人眼睛和感官的技术, 都是来源于我们对这些感官更深层次的理解. 越是对这些感官了解透彻, 越是容易创造出魔法般的人机交互. 今天David 9想要分析的论文就和感官交互有关, 特别之处是它是人体最复杂的感官 — 大脑 .

很难想象今年CVPR上竟然有这样一篇近乎科幻不可思议的研究, 相信读完你也会兴奋的.

这篇文章本质上的研究, 是从EEG脑电波提取视觉特征, 从而进行我们常见的视觉分类任务(狗? 吉他? 鞋子? 披萨?):

来自: https://www.youtube.com/watch?v=9eKtMjW7T7w&t=343s

最后一层全连接层做的视觉分类任务是非常常见的.

不同的是前面层不再是从头训练Alexnet, GoogleNet或者VGG, 也不是预训练的神经网络. 而是通过收集脑电波信息, 分析脑电波提取的抽象特征. 继续阅读CVPR 2017论文精选#3 不可思议的研究: EEG脑电波深度学习在视觉分类中的应用

CVPR 2017论文精选#2 密集连接的卷积网络DenseNet(Best paper award 最佳论文奖)

如果大脑中的每个神经元都代表一些训练参数,那么,我们在不断的学习过程中,现有的神经元够用吗?大脑是如何优化参数效率的? — David 9

这届CVPR上的两篇最佳论文中, David 9更欣赏康奈尔大学和清华大学的密集连接卷积网络DenseNet(Densely Connected Convolutional Networks) , 内容有料,工作踏实 !我们在之前文章就提到,模型泛化能力的提高不是一些普通的Tricks决定的,更多地来源于模型本身的结构。

CNN发展至今,人们从热衷于探索隐式正则方法(Dropout, Batch normalization等等),到现在开始逐渐关注模型本身结构的创新。这是一个好现象。

密集连接卷积网络DenseNet正是试图把跳层连接做到极致的一种结构创新:

图1-密集连接模块,来自:https://arxiv.org/pdf/1608.06993.pdf

跳层连接方法是对中间层输出特征图信息的探索,之前的ResNets和Highway Networks都曾使用,把前层的输出特征图信息直接传递到后面的一些层,可以有效地提高信息传递效率和信息复用效率。 继续阅读CVPR 2017论文精选#2 密集连接的卷积网络DenseNet(Best paper award 最佳论文奖)

CVPR 2017论文精选#1 用模拟+非监督对抗生成图片的增强方法进行学习(Best paper award 最佳论文奖)

人类的想象力似乎是天生的, 而现今计算机的”想象力”来自”数据增强”技术. — David 9

这届CVPR上, 苹果为博得AI界眼球, 竟然拿到了最佳论文 !  也许这篇论文没有什么深远意义,也许只能反映学术被业界商界渗透的厉害,也许有更好的文章应该拿到最佳论文。

这又何妨, 历史的齿轮从来不会倒退, David 9看到的趋势是, 人类越来越擅长赋予计算机”想象力”, 以GAN为辅助的”数据增强”技术是开始, 但绝不是终点 !

言归正传, 来剖析这篇论文, 首先,这篇文章的目标非常清晰,就是用非监督训练集,训练一个“图片优化器”(refiner),用来优化人工模拟图片,使得这一模拟图片更像真实图片,并且具有真实图片的独特属性:

如上图,人工模拟的伪造图片(Synthetic)经过优化器Refiner变得与非监督集合(第一行的3张图片)非常相似,极大的增强了模拟图片的真实性。 继续阅读CVPR 2017论文精选#1 用模拟+非监督对抗生成图片的增强方法进行学习(Best paper award 最佳论文奖)

迁移学习101: Transfer learning, pretrained learning, fine tuning 代码与例程分析 源码实践

目前的迁移学习太粗浅, 归因于我们对表征的理解太粗浅. 但这是一个好方向, 如果我们能从”迁移学习”上升到”继承学习”, 任何模型都是”可继承”的, 不用担心今天的模型到了明天就毫无用处, 就像人类的基因一代代地演变, 是不是会有点意思 ? — David 9

太多初学者总是混淆迁移学习预训练模型, David 9一直想为大家区分两者, 其实迁移学习预训练并不难区分:

  1. 把模型的所有参数保存起来, 都可以宽泛地叫做预训练, 所以预训练比迁移学习宽泛的多. 我们并不设限预训练的保存模型未来的用处 (部署 or 继续优化 or 迁移学习)
  2. 把预训练的模型用在其他应用的训练可以称为迁移学习. 

迁移学习(Transfer learning) 的原理相当简单:

如上图, 复用之前预训练的复杂深度网络(第一行大蓝框), 我们复用倒数第二层对图像的输出特征作为新的训练输入.

使用这个输入, 我们再训练一个迷你的浅层网络(第二行绿底网络), 就可以应用在其他领域. 继续阅读迁移学习101: Transfer learning, pretrained learning, fine tuning 代码与例程分析 源码实践

机器视觉 目标检测补习贴之SSD实时检测, Multibox Single Shot Detector

机器视觉是一场科学家与像素之间的游戏 — David 9

上一期,理解了YOLO这样的实时检测是如何”看一眼“进行检测的, 即让各个卷积特征图(通道)蕴含检测位置分类置信度的信息(即下图的Multiway Classification和Box Regression):

对于卷积的本质, David 9需要总结下面两点:

1. 单纯的卷积不会造成信息损失. 只是经过了层层卷积, 计算机看到了“更深”的图片, 输入图片被编码到最后一层的输出特征图(通道) 

2. 较大的卷积窗口可以卷积得到的输出特征图能够看到较大的物体, 反之只能看到较小的图片. 想象用1*1的最小卷积窗口, 最后卷积的图片粒度和输入图片粒度一模一样. 但是如果用图片长*宽 的卷积窗口, 只能编码出一个大粒度的输出特征. 即, 输出特征图越小, 把原始图片压缩成的粒度就越大.  继续阅读机器视觉 目标检测补习贴之SSD实时检测, Multibox Single Shot Detector

机器视觉 目标检测补习贴之YOLO实时检测, You only look once

机器视觉是一场科学家与像素之间的游戏 — David 9

上一期,我们已经介绍了R-CNN系列目标检测方法(R-CNN, Fast R-CNN, Faster R-CNN)。事实上,R-CNN系列算法看图片做目标检测,都是需要“看两眼”的. 即,第一眼 做 “region proposals”获得所有候选目标框,第二眼 对所有候选框做“Box Classifier候选框分类”才能完成目标检测:

事实上“第一眼”是挺费时间的,可否看一眼就能得到最后的目标检测结果?达到实时检测的可能? 答案是肯定的,这也是我们要讲YOLO的由来 — You only look once !

YOLO能够做到在输出中同时包含图片bounding box(检测框)的分类信息位置信息:  继续阅读机器视觉 目标检测补习贴之YOLO实时检测, You only look once