CVPR2018精选#3: 端到端FCN学会在黑暗中看世界,全卷积网络处理低曝光、低亮度图片并进行还原,及其TensorFlow源码

与其说AI智能时代,不如说是“泛智能的自动化”时代,或者,以人类为智能核心的 “机器智能辅助”时代 — David 9

最近流传的一些AI“寒冬论”, David 9 觉得很可笑。二十年前深蓝击败卡斯帕罗夫时,自动化智能已经开始发展,只是现今更“智能”而已,而这个更智能、更普及的趋势不是任何人可以控制的。

人类无尽的贪婪和惰性需要外部智能辅助和填补,也许以后的核心不是“深度学习”或者增强学习,但终究会有更“好”的智能去做这些“脏”活“累”活,那些人类不想干或人类做不到的活。。。

CVPR2018上,伊利诺伊大学和Intel实验室的这篇“学会在黑暗中看世界” 就做了人类做不到的活, 自动把低曝光、低亮度图片进行亮度还原

来自论文:Learning to See in the Dark

人肉眼完全开不到的曝光环境下,机器实际是可以还原出肉眼可识别的亮度。

该论文的第一个贡献是See-in-the-Dark (SID)数据集的整理:

来自论文:Learning to See in the Dark

因为目前的数据集没有针对低曝光同时低亮度的图片集,如上图,作者用索尼和富士相机收集低曝光的室内室外图片,同时配对正常曝光的图片用来训练: 继续阅读CVPR2018精选#3: 端到端FCN学会在黑暗中看世界,全卷积网络处理低曝光、低亮度图片并进行还原,及其TensorFlow源码

CVPR2018精选#2: 视频分析的非局部(non-local) 神经网络模块,CMU与Facebook AI研究室视频分类识别新贡献

拥有什么,决定了你只能迷恋什么 — David 9

很大程度上,目前的芯片工艺和技术,决定了人类只能迷恋神经网络这样的方案(高于传统机器学习一个计算级别)。就像进入铁器时代,人们才能方便地砍伐森林、挖掘矿山、开垦土地(如果在青铜时代就别想了)。

在铁器时代,对铁器的改进很受欢迎;正如今年CVPR上大神Kaiming HeXiaolong Wang 的文章试图改进神经网络工具去“开垦”视频分析 这片土地。

我们知道视频图片的区别无非是多了时间的维度(time,视频的帧)。最直觉的做法是先用cnn,再用擅长时间序列的rnn;或者,直接用3D卷积去做。而实际情况是直接用3D卷积效果不是最好,于是有人用两个cnn去做(一个cnn分析时间,一个cnn分析空间),或者另外用一个分析轨迹(trajectories)的模块去加强时空感

非局部(non-local) 模块把非局部感受野的信息提取操作做成一个神经网络模块,方便了端到端的视频分析:

一个可以插入神经网络的non-local模块

这个模块输入x可以理解为32帧的视频(32张图片帧数 T=32,长宽为H×W),输出z也是H×W大小的特征图。有没有注意到最左端的箭头是一个跳层连接?没错,non-local模块就是把视频额外的时空信息提取作为一个残差操作,这样整个模块可以任意插入到一个残差网络resnet中: 继续阅读CVPR2018精选#2: 视频分析的非局部(non-local) 神经网络模块,CMU与Facebook AI研究室视频分类识别新贡献

CVPR2018精选#1: 无监督且多态的图片样式转换技术,康奈尔大学与英伟达新作MUNIT及其源码

所谓无监督学习,只是人类加入了约束和先验逻辑的无监督 — David 9

更新:有同学发现这篇文章可能并没有在CVPR2018最终录取名单(只是投稿),最终录取名单参考可以看下面链接:

https://github.com/amusi/daily-paper-computer-vision/blob/master/2018/cvpr2018-paper-list.csv

最近图片生成领域正刮着一股“无监督”之风,David 9今天讲Cornell大学与英伟达的新作,正是使无监督可以生成“多态”图片的技术,论文名:Multimodal Unsupervised Image-to-Image Translation (MUNIT)。

这股“无监督”之风的刮起,只是因为我们发现用GAN结合一些人为约束和先验逻辑,训练时无需监督图片配对,直接在domain1domain2中随机抽一些图片训练,即可得到样式转换模型。这些约束和先验有许多做法,可以迫使样式转换模型(从domain1到domain2)保留domain1的一些语义特征;也可以像CycleGAN的循环一致约束,如果一张图片x从domain1转换到domain2变为y,那么把y再从domain2转换回domain1变为x2时,x应该和x2非常相似和一致:

来自CycleGAN:https://arxiv.org/pdf/1703.10593.pdf

而这些无监督方法有一个缺陷:不能生成多样(多态)的图片MUNIT正是为了解决这一问题提出的,因为目前类似BicycleGAN的多态图片生成方法都需要配对监督学习。

MUNIT为此做了一些约束和假设,如,假设图片有两部分信息:内容c样式s,另外,图片样式转换时domain1和domain2是共享内容c的信息空间的:

MUNIT的自编码器

生成图片时,把同一个内容c和不同样式s组合并编码输出,就可生成多态的图片:

来自:https://arxiv.org/pdf/1804.04732.pdf

实际训练时,我们需要两个自编码器,分别对应domain1和domain2: 继续阅读CVPR2018精选#1: 无监督且多态的图片样式转换技术,康奈尔大学与英伟达新作MUNIT及其源码