做机器学习,再别把IoU,ROI 和 ROC,AUC 搞混了 !聊聊目标检测,医疗领域的那些评价函数

涉及领域不多的机器学习爱好者经常会把IoU,ROI 和 ROC,AUC 这样的评价函数(Metric functions)搞混。其实记住它们也没那么难,David 9今天就来帮大家理一理:

1. IoU (Intersection over Union),交集并集比

2. ROI (region of interest) , 感兴趣区域

3. ROC (Receiver Operating Characteristic curve) 受试者工作特征曲线

4. AUC (Area Under the Curve) , 曲线下区域

首先要区分,前两个目标检测领域的术语;后两个是从医疗领域引进的,但是所有机器学习准确率都可能用到该指标。

最容易理解的是第2个ROI,我们做任何目标检测在准备数据集时都要选择感兴趣区域, 我们之前的文章也提到过

labelImg 就是一个不错的标注工具。帮助你选择目标检测的感兴趣框。是的这不是一个评价函数,是一个概念而已。 继续阅读做机器学习,再别把IoU,ROI 和 ROC,AUC 搞混了 !聊聊目标检测,医疗领域的那些评价函数

德州扑克AI(Libratus)的背后:不完美信息博弈中,求解安全嵌套的子博弈, #NIPS 2017最佳论文奖

如果AI的本质是在可接受时间内搜索到最优解,那么容易定义最优解的问题都是AI可以解决的。这样,人类的“情感”看起来如此“珍贵”,因为它很难用人工定义“最优解” — David 9

相信大家还记得2017年初人工智能Libratus完胜德州扑克顶级玩家的事,年底卡耐基梅隆大学(CMU)在NIPS 2017上公开这一贡献并获得最佳论文奖。这一进展之所以让人兴奋,是因为它为不完美信息博弈(Imperfect-Information Games)问题提供了新的解决思路:

来自:https://www.youtube.com/watch?v=tRiaGahlyy4

棋类游戏,双方都是共享一切信息的,这种博弈称为完美信息博弈。而扑克类,谈判,商业决策等类似问题,双方的信息都是不公开给对方的,这就提高了AI算法搜索最优解的难度。

对于完美信息博弈,每一步Action引出下一步子状态,接下来在子状态中求解最优解即可:

来自:https://www.youtube.com/watch?v=tRiaGahlyy4

对于不完美信息博弈,我们不能安心地解决眼前的子问题,因为我们同时必须考虑:“对手的手牌现在会是什么样的?”,“他下一次会用什么策略?”等等烦人的问题,因此许多平行的子问题是我们必须同时考虑的:

来自:https://www.youtube.com/watch?v=tRiaGahlyy4

继续阅读德州扑克AI(Libratus)的背后:不完美信息博弈中,求解安全嵌套的子博弈, #NIPS 2017最佳论文奖

8 个很棒的机器学习小抄,速查表及其解释: Machine Learning Cheat Sheets !

这期David 9给各位初学者推荐8个很棒的机器学习小抄,速查表以及我的理解,希望各位刚入坑的小伙伴能有一个总览性的理解,加速你的学习迭代:

1.  SCIKIT-LEARN 算法导览

分类只要判别类别标签,回归还要预测具体值,特征降维要找到有用的那些维度,聚类是要给未知总集区分类别,初学者除了知道以上这些问题大类, SCIKIT-LEARN 算法导览还提供一些具体的选择细节。 继续阅读8 个很棒的机器学习小抄,速查表及其解释: Machine Learning Cheat Sheets !

机器视觉目标检测补习贴之R-CNN系列 — R-CNN, Fast R-CNN, Faster R-CNN

CVPR 2017在即,David 9最近补习了目标检测的趋势研究。深度学习无疑在近年来使机器视觉和目标检测上了一个新台阶。初识目标检测领域,当然先要了解下面这些框架:

  • RCNN
  • Fast RCNN
  • Faster RCNN
  • Yolo
  • SSD

附一张发表RCNN并开启目标检测深度学习浪潮的Ross B. Girshick(rbg)男神

无论如何,目标检测属于应用范畴,有些机器学习基础上手还是很快的,所以让我们马上来补习一下!

首先什么是目标检测?目标检测对人类是如此简单:

把存在的目标从图片中找出来,就是那么简单! 继续阅读机器视觉目标检测补习贴之R-CNN系列 — R-CNN, Fast R-CNN, Faster R-CNN

Yoshua Bengio大神深度学习实战方法论解读 — 模型评估, 超参数调优,网格搜索,调试策略

人类擅长把一个问题转化为另一个问题,而深度学习试图把所有问题转化为同一个问题 — David 9

现代深度学习或机器学习,很大程度上是把所有问题转化为同一个“模型训练”问题。如何解决这个模型训练的问题成为了数据科学家们的主攻问题。

鲜为人知的是,设计机器学习模型、训练算法和目标函数仅仅是工作的一部分。还有很重要的一部分是:数据科学家们要对数据和问题有更深层次的理解,对于模型评估超参数调优网格搜索调试策略都有相当的实践经验。

正如Deep Learning(Ian Goodfellow Yoshua Bengio)一书中所说:

Correct application of an algorithm depends on mastering some fairly simple methodology

继续阅读Yoshua Bengio大神深度学习实战方法论解读 — 模型评估, 超参数调优,网格搜索,调试策略

keras 手把手入门#1-MNIST手写数字识别 深度学习实战闪电入门

人们已经教会计算机自动找出那些重要的特征和属性, 那么下一步我们该教会计算机什么? — David 9

用深度学习框架跑过实际问题的朋友一定有这样的感觉: 太神奇了, 它竟然能自己学习重要的特征 ! 下一步我们改教会计算机什么?莫非是教会他们寻找新的未知特征

对于卷积神经网络cnn, 其中每个卷积核就是一个cnn习得的特征, 详见David 9之前的关于cnn博客

今天我们的主角是keras,其简洁性和易用性简直出乎David 9我的预期。大家都知道keras是在TensorFlow上又包装了一层,向简洁易用的深度学习又迈出了坚实的一步。

所以,今天就来带大家写keras中的Hello World , 做一个手写数字识别的cnn。回顾cnn架构:

我们要处理的是这样的灰度像素图: 继续阅读keras 手把手入门#1-MNIST手写数字识别 深度学习实战闪电入门

#15 增强学习101 闪电入门 reinforcement-learning

是先用自己的”套路”边试边学, 还是把所有情况都考虑之后再总结, 这是一个问题 — David 9

David 9 本人并不提倡用外部视角或者”黑箱”来看待”智能”和”机器学习”.

正如《西部世界》迷宫的中心是自己的内心. 神经网络发展到目前的深度学习, 正是因为内部的结构发生了变化(自编码器, 受限玻尔兹曼机, 改进的激活函数, 等等…) . 所以David 9 相信神经网络未来的发展在于人类对内部结构的新认知, 一定有更美的内部结构存在 !

而今天所说的增强学习, 未来更可能作为辅助外围框架, 而不是”智能核心”存在. 不过作为闪电入门, 我们有必要学习这一流行理论:

来自: http://www.cis.upenn.edu/~cis519/fall2015/lectures/14_ReinforcementLearning.pdf

没错, 这张图和文章特色图片是一个思想:

训练实体(Agent)不断地采取行动(action), 之后转到下一个状态(State), 并且获得一个回报(reward), 从而进一步更新训练实体Agent. 继续阅读#15 增强学习101 闪电入门 reinforcement-learning