CTC的直观理解(Connectionist Temporal Classification连接时序分类),单行文本时序分类识别的端到端方法

把基于概率的自动化叫做AI是否有些可笑? — David 9

原文:An Intuitive Explanation of Connectionist Temporal Classification

聊到CTC(Connectionist Temporal Classification),很多人的第一反应是ctc擅长单行验证码识别:

两组谷歌验证码示例

是的,ctc可以提高单行文本识别鲁棒性(不同长度不同位置 )。今天David 9分享的这篇文章用几个重点直观的见解把ctc讲的简洁易懂,所以在这里就和大家一起补一补ctc 。

首先ctc算不上一个框架,更像是连接在神经网络后的一个归纳字符连接性的操作

来自:https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c

cnn提取图像像素特征,rnn提取图像时序特征,而ctc归纳字符间的连接特性。

那么CTC有什么好处?

因手写字符的随机性,人工可以标注字符出现的像素范围,但是太过麻烦,ctc可以告诉我们哪些像素范围对应的字符

手写字符的单行像素标注, 来自:https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c

如上图标注“t”的位置出现t字符,标注o的区域出现o字符。 继续阅读CTC的直观理解(Connectionist Temporal Classification连接时序分类),单行文本时序分类识别的端到端方法

聊聊目标检测中的多尺度检测(Multi-Scale),从YOLO,ssd到FPN,SNIPER,SSD填坑贴和极大极小目标识别

狙击手在放大倍焦前已经经历了大量的小目标训练,这样看似乎是RPN做的好 — David 9

之前在讲SSD时我们聊过SSD的目标检测是如何提高多尺度(较大或较小)物体检测率的。我们来回顾一下,首先,较大的卷积窗口可以卷积后看到较大的物体, 反之只能看到较小的图片. 想象用1*1的最小卷积窗口, 最后卷积的图片粒度和输入图片粒度一模一样. 但是如果用图片长*宽 的卷积窗口, 只能编码出一个大粒度的输出特征.

对于yolov1,每层使用同样大小的卷积窗口, 识别超大物体或者超小物体就变得无能为力(最后一层的输出特征图是固定7*7):

YOLO架构示意图

SSD就更进一步,最后一层的检测是由之前多个尺度(Multi-Scale)的特征图共同生成的:

SSD架构示意图

这样SSD在计算复杂度允许的情况下,在多尺度物体的检测上有所提高。但是SSD也有明显缺陷,其最后几层的所谓“多尺度”是有限的(如上图特征图尺寸越小,可以识别的物体越大)。对于极小的目标识别,SSD就显得无能为力了继续阅读聊聊目标检测中的多尺度检测(Multi-Scale),从YOLO,ssd到FPN,SNIPER,SSD填坑贴和极大极小目标识别

吴恩达新书《Machine Learning Yearning》读后感,验证(测试)集怎么选?如何高效分析性能?降低可避免偏差和方差?实操经验总结

如果你要选验证集或测试集,就选那些你预料未来数据的样子(Choose dev and test sets to reflect data you expect to get in the future and want to do well on)— 吴恩达

前不久吴恩达新书“机器学习念想”(Machine Learning Yearning)手稿完工(不知道这样翻译会不会被打。。)David 9 忍不住拜读 ,把读后感总结如下,欢迎指正和交流:

纵观全书分三部分:

  1. 怎么构建验证集和测试集?
  2. 如何构建有效的性能和错误分析机制 ?如何优化模型?
  3. 端到端模型的一些讨论

事实上,上手深度学习(机器学习)项目最先要做的和模型本身关系不大,而是构思性能验证系统和错误分析的有效机制。

艺术品最华丽的可能是最后的润色,但其构思、规划以及推敲往往占据大师平时更多心力

列奥纳多·达·芬奇《岩间圣母》草图(左), 和最后完整润色后画作(右)

同样,构建一个高效的深度学习系统,首先要有一个好的验证体系、推敲整理过的数据集、高效的错误分析机制,这样最后的润色(模型优化)才能水到渠成。

1. 谈谈验证(测试)集怎么选?

书中建议是,如果你要选验证集或测试集,就选那些你预料未来数据的样子。因此训练集样本分布不需要和验证集(测试集)相同。用白话说就是以你预料“现场”的样本分布为准。 继续阅读吴恩达新书《Machine Learning Yearning》读后感,验证(测试)集怎么选?如何高效分析性能?降低可避免偏差和方差?实操经验总结

CVPR2018精选#2: 视频分析的非局部(non-local) 神经网络模块,CMU与Facebook AI研究室视频分类识别新贡献

拥有什么,决定了你只能迷恋什么 — David 9

很大程度上,目前的芯片工艺和技术,决定了人类只能迷恋神经网络这样的方案(高于传统机器学习一个计算级别)。就像进入铁器时代,人们才能方便地砍伐森林、挖掘矿山、开垦土地(如果在青铜时代就别想了)。

在铁器时代,对铁器的改进很受欢迎;正如今年CVPR上大神Kaiming HeXiaolong Wang 的文章试图改进神经网络工具去“开垦”视频分析 这片土地。

我们知道视频图片的区别无非是多了时间的维度(time,视频的帧)。最直觉的做法是先用cnn,再用擅长时间序列的rnn;或者,直接用3D卷积去做。而实际情况是直接用3D卷积效果不是最好,于是有人用两个cnn去做(一个cnn分析时间,一个cnn分析空间),或者另外用一个分析轨迹(trajectories)的模块去加强时空感

非局部(non-local) 模块把非局部感受野的信息提取操作做成一个神经网络模块,方便了端到端的视频分析:

一个可以插入神经网络的non-local模块

这个模块输入x可以理解为32帧的视频(32张图片帧数 T=32,长宽为H×W),输出z也是H×W大小的特征图。有没有注意到最左端的箭头是一个跳层连接?没错,non-local模块就是把视频额外的时空信息提取作为一个残差操作,这样整个模块可以任意插入到一个残差网络resnet中: 继续阅读CVPR2018精选#2: 视频分析的非局部(non-local) 神经网络模块,CMU与Facebook AI研究室视频分类识别新贡献

David9的普及贴:机器视觉中的平均精度(AP), 平均精度均值(mAP), 召回率(Recall), 精确率(Precision), TP,TN,FP,FN

召回率和准确率就像你去赌场要同时带着“票子”和“运气” — David 9

在机器学习面试中,经常会问道“召回率”“准确率”的区别 。 其实,就像你去赌场下注一样,如果你“票子”很多,可以把钱分摊在不同的赌注上,总有一个赌注会猜对,当你猜对了,就是一次“召回”了; 而“准确率”不关注你下多少注,好似你在赌场碰“运气”,下注越多,越能看出你今天的“运气”。

因此,你猜的次数越多自然有较大的召回,当然最好的情况是,你猜测很少次数就能召回所有。

计算召回率(Recall) 和 精确率(Precision) 时,人们一般会先搬出TP(True positive),TN(True negative),FP(False positive),FN(False negative )的概念:

                     Condition: A        Not A

  Test says “A”      True positive   |   False positive
                     ----------------------------------
  Test says “Not A”  False negative  |    True negative

然后给出公式:

召回率 Recall = TP / (TP + FN)

准确率 Precision = TP / (TP + FP)

事实上,不用硬背公式。两者的抽样方式就很不同: 召回率的抽样是每次取同一标签中的一个样本,如果预测正确就计一分;准确率的抽样是每次取你已预测为同一类别的一个样本,如果预测正确就计一分。这里一个关键点是:召回率是从数据集的同一标签的样本抽样;而准确率是从已经预测为同一类别的样本抽样。召回率和准确率都可以只针对一个类别。 继续阅读David9的普及贴:机器视觉中的平均精度(AP), 平均精度均值(mAP), 召回率(Recall), 精确率(Precision), TP,TN,FP,FN

CVPR2018精选#1: 无监督且多态的图片样式转换技术,康奈尔大学与英伟达新作MUNIT及其源码

所谓无监督学习,只是人类加入了约束和先验逻辑的无监督 — David 9

更新:有同学发现这篇文章可能并没有在CVPR2018最终录取名单(只是投稿),最终录取名单参考可以看下面链接:

https://github.com/amusi/daily-paper-computer-vision/blob/master/2018/cvpr2018-paper-list.csv

最近图片生成领域正刮着一股“无监督”之风,David 9今天讲Cornell大学与英伟达的新作,正是使无监督可以生成“多态”图片的技术,论文名:Multimodal Unsupervised Image-to-Image Translation (MUNIT)。

这股“无监督”之风的刮起,只是因为我们发现用GAN结合一些人为约束和先验逻辑,训练时无需监督图片配对,直接在domain1domain2中随机抽一些图片训练,即可得到样式转换模型。这些约束和先验有许多做法,可以迫使样式转换模型(从domain1到domain2)保留domain1的一些语义特征;也可以像CycleGAN的循环一致约束,如果一张图片x从domain1转换到domain2变为y,那么把y再从domain2转换回domain1变为x2时,x应该和x2非常相似和一致:

来自CycleGAN:https://arxiv.org/pdf/1703.10593.pdf

而这些无监督方法有一个缺陷:不能生成多样(多态)的图片MUNIT正是为了解决这一问题提出的,因为目前类似BicycleGAN的多态图片生成方法都需要配对监督学习。

MUNIT为此做了一些约束和假设,如,假设图片有两部分信息:内容c样式s,另外,图片样式转换时domain1和domain2是共享内容c的信息空间的:

MUNIT的自编码器

生成图片时,把同一个内容c和不同样式s组合并编码输出,就可生成多态的图片:

来自:https://arxiv.org/pdf/1804.04732.pdf

实际训练时,我们需要两个自编码器,分别对应domain1和domain2: 继续阅读CVPR2018精选#1: 无监督且多态的图片样式转换技术,康奈尔大学与英伟达新作MUNIT及其源码

“图片风格转换”又出新作,英伟达CVPR论文:高效图片风格转换与解析闭合解

如果性能遇到了瓶颈,“老套”的办法总能帮我们搞定一些事情 — David 9

深度卷积网络 广泛应用以来,我们更像进入了一个“伪智能”时代。深度网络的“创造”更多的是基于“巨量数据”的“创造”。以图片风格转换为例,无论是我们以前说的GAN还是其他变形CNN,都需要标注样本达到一定量,才能生成比较好的风格转换图(附带着冗长的训练时间 和其他模型调优技巧):

英伟达前不久放出的CVPR新论文,一定程度上证明了在这个“伪智能”时代,只用深度网络是不够的,往往加入一些“老套”的算法可以帮你得到一些“漂亮”的结果:

来自:https://arxiv.org/pdf/1802.06474.pdf

上图是给定一张原始图片(a)和一张“黑夜”风格图片(b),我们希望把(a)的风格转换成(b)的结果。

可见(c)与(d)的结果都没有英伟达声称的方法(e)看起来自然。

英伟达这篇论文的一大半贡献不在深度网络,

而是如何把传统的WCT白化和调色转换:whitening and coloring transforms)应用到深度网络中,以及图片平滑的后处理工作。

整体框架如下:

来自:https://arxiv.org/pdf/1802.06474.pdf 继续阅读“图片风格转换”又出新作,英伟达CVPR论文:高效图片风格转换与解析闭合解