深度增长网络: 构建稳定,高质量,多样的GAN对抗模型,英伟达论文选读2

GAN凝结了人们对”创作”本质的看法 — David 9

虽然ICLR 2018 要明年5月举办, 一些企业巨头已经摩拳擦掌,前不久,英伟达正在审阅的论文引起了大家注意,David 9觉得很有意思。论文用深度增长的网络构建、并生成稳定,高质量,多样的GAN对抗样本图片 :

来自:https://www.youtube.com/watch?v=XOxxPcy5Gr4&feature=youtu.be

上图demo是深度增长网络GAN生成的明星样本,清晰度和质量堪称惊艳。论文打破了神经网络在训练过程中“架构不变”的惯性思维。为了更好地“临摹”高清的明星脸谱,训练过程中,先从“粗略模糊”地“勾勒”开始对抗学习: 继续阅读深度增长网络: 构建稳定,高质量,多样的GAN对抗模型,英伟达论文选读2

聊一聊Vicarious发表在Science的那篇生成视觉模型,被LeCun痛批的递归皮质网络RCN

自己吹得牛逼,硬着头皮也要实现

Vicarious是和Deepmind对标的以强人工智能为目标的美国AI新兴公司。有意思的是,虽然融了上亿美元,除了工业机器人,Vicarious并没有像Deepmind的AlphaGo类似接地气的夺目产品。之前饱受争议,终于在近期公开的递归皮质网络RCN还被LeCun痛批了一回。RCN号称攻破了人类的CAPTCHA验证码自动识别,达到了神经网络300倍的数据利用率:

首先我们来看一下Yann LeCun早在2013年批评的理由: 继续阅读聊一聊Vicarious发表在Science的那篇生成视觉模型,被LeCun痛批的递归皮质网络RCN

#Inception深度网络家族盘点 | Inception v4 和Inception-ResNet未来走向何方 ?

多融合和标准化的网络是深度架构未来的可见趋势 — David 9

Inception深度网络架构已经走过4个版本,AI的空前热潮,让业内期待新网络架构的心情如同当年期待Window系统版本一样。

Inception V1的想法其实很简单:一方面我们人工地调整每层卷积窗口的尺寸(真麻烦!)另一方面,我们又想让深度网络更“深”,为什么不让同一层就有各种大小卷积可以学习?

是不是轻松多了?仅仅一层block就包含1*1卷积,3*3卷积,5*5卷积,3*3池化。

这样,网络中每一层都能学习到“稀疏”或者“不稀疏”的特征:

另外,Inception V1开创了两个变化:

1. 以前每一层线性卷积需要之后跟一个Relu激活函数或者pooling层增加非线性。而Inception V1直接通过DepthConcat在每个block后合成特征,获得非线性属性。 继续阅读#Inception深度网络家族盘点 | Inception v4 和Inception-ResNet未来走向何方 ?

CVPR 2017之#CNN论文精选, PointNet:端到端3D图像(点集)分类与分割

计算机科学很大程度上是权衡“现实”和“理想”的方法学 — David 9

3D图像的分类与分割问题,虽然理想上可以用3D卷积构造深度网络,但事实上, 其巨大计算开销不允许我们直接使用卷积对3D云图集进行训练.  试想2D卷积(GoogleNet, ResNet, Alexnet)训练时间就已经让人捉急了, 何况样本是3D云图:

幸运的是现实再残酷, 人类总能找到暂时解决问题的方法, PointNet就是一个权宜之计:它实现端到端3D图像(点集)分类与分割:

论文不使用3D卷积, 而是用深度网络模拟通用对称函数

来自:https://arxiv.org/pdf/1612.00593.pdf

输入总共n个点的无序云图点集({x1,x2 … , xn}), 通用函数f 输出该云图分类(汽车,书桌,飞机)。 继续阅读CVPR 2017之#CNN论文精选, PointNet:端到端3D图像(点集)分类与分割

OpenFace手把手入门之 — 快速训练一个人脸识别模型,比一比你像哪个明星,亲测可用,python torch lua

OpenFace是一款优秀的开源深度学习人脸识别库。如果你熟悉torch,python或者lua,这款丰富的人脸识别库更是一款不可多得的工具。

今天David 9 就带大家手把手训练一个人脸识别模型,测试一下你像哪个明星?

1.  下载openface的docker镜像,免去你配置openface的过程:

docker pull bamos/openface

2. 跑这个docker镜像,进入项目目录:

docker run -v /Users:/host/Users -p 9000:9000 -p 8000:8000 -t -i bamos/openface /bin/bash
cd /root/openface

注意 -v /Users:/host/Users 这个参数是必要的。因为docker中的openface项目还没有训练数据集,把你本地的/Users目录挂载到docker镜像中的/host/Users目录,可以方便你复制一些用于训练的图片数据集。 继续阅读OpenFace手把手入门之 — 快速训练一个人脸识别模型,比一比你像哪个明星,亲测可用,python torch lua

机器视觉 目标检测补习贴之SSD实时检测, Multibox Single Shot Detector

机器视觉是一场科学家与像素之间的游戏 — David 9

上一期,理解了YOLO这样的实时检测是如何”看一眼“进行检测的, 即让各个卷积特征图(通道)蕴含检测位置分类置信度的信息(即下图的Multiway Classification和Box Regression):

对于卷积的本质, David 9需要总结下面两点:

1. 单纯的卷积不会造成信息损失. 只是经过了层层卷积, 计算机看到了“更深”的图片, 输入图片被编码到最后一层的输出特征图(通道) 

2. 较大的卷积窗口可以卷积得到的输出特征图能够看到较大的物体, 反之只能看到较小的图片. 想象用1*1的最小卷积窗口, 最后卷积的图片粒度和输入图片粒度一模一样. 但是如果用图片长*宽 的卷积窗口, 只能编码出一个大粒度的输出特征. 即, 输出特征图越小, 把原始图片压缩成的粒度就越大.  继续阅读机器视觉 目标检测补习贴之SSD实时检测, Multibox Single Shot Detector

机器视觉 目标检测补习贴之YOLO实时检测, You only look once

机器视觉是一场科学家与像素之间的游戏 — David 9

上一期,我们已经介绍了R-CNN系列目标检测方法(R-CNN, Fast R-CNN, Faster R-CNN)。事实上,R-CNN系列算法看图片做目标检测,都是需要“看两眼”的. 即,第一眼 做 “region proposals”获得所有候选目标框,第二眼 对所有候选框做“Box Classifier候选框分类”才能完成目标检测:

事实上“第一眼”是挺费时间的,可否看一眼就能得到最后的目标检测结果?达到实时检测的可能? 答案是肯定的,这也是我们要讲YOLO的由来 — You only look once !

YOLO能够做到在输出中同时包含图片bounding box(检测框)的分类信息位置信息:  继续阅读机器视觉 目标检测补习贴之YOLO实时检测, You only look once